IDEAS home Printed from https://ideas.repec.org/a/spr/jcsosc/v7y2024i1d10.1007_s42001-023-00232-9.html
   My bibliography  Save this article

Regional contagion in health behaviors: evidence from COVID-19 vaccination modeling in England with social network theorem

Author

Listed:
  • Yiang Li

    (University of Chicago)

  • Xingzuo Zhou

    (University College London)

  • Zejian Lyu

    (University of Chicago)

Abstract

Social contagion is a key mechanism that shapes health behaviors, but few studies have applied this approach at the regional level to examine how vaccination beliefs and rates vary and diffuse across geographic areas. Building upon the traditional SIR model, this paper addresses this gap by applying social network theory to a new compartmental model to simulate regional contagion in COVID-19 vaccination rates in England, using panel data of new and accumulated vaccination numbers from December 2020 to June 2022. This Social Network Vaccination Rate (SNVR) model estimates each region’s initial and changing vaccination beliefs and their mutual influence on each other. The results reveal that remote regions had higher initial vaccination beliefs and stronger spillover effects on other regions such as London with more population diversity. The paper suggests that policies to increase vaccination rates should consider the heterogeneity and peer effects among regions that collectively affect vaccination beliefs. The paper also discusses the limitations of the network model and directions for future research.

Suggested Citation

  • Yiang Li & Xingzuo Zhou & Zejian Lyu, 2024. "Regional contagion in health behaviors: evidence from COVID-19 vaccination modeling in England with social network theorem," Journal of Computational Social Science, Springer, vol. 7(1), pages 197-216, April.
  • Handle: RePEc:spr:jcsosc:v:7:y:2024:i:1:d:10.1007_s42001-023-00232-9
    DOI: 10.1007/s42001-023-00232-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42001-023-00232-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42001-023-00232-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcsosc:v:7:y:2024:i:1:d:10.1007_s42001-023-00232-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.