Integrating semantic directions with concept mover’s distance to measure binary concept engagement
Author
Abstract
Suggested Citation
DOI: 10.1007/s42001-020-00075-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nikhil Garg & Londa Schiebinger & Dan Jurafsky & James Zou, 2018. "Word embeddings quantify 100 years of gender and ethnic stereotypes," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 115(16), pages 3635-3644, April.
- Dustin S. Stoltz & Marshall A. Taylor, 2019. "Concept Mover’s Distance: measuring concept engagement via word embeddings in texts," Journal of Computational Social Science, Springer, vol. 2(2), pages 293-313, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Oscar Stuhler, 2022. "Who Does What to Whom? Making Text Parsers Work for Sociological Inquiry," Sociological Methods & Research, , vol. 51(4), pages 1580-1633, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Taylor, Marshall A. & Stoltz, Dustin S., 2020. "Integrating Semantic Directions with Concept Mover's Distance to Measure Binary Concept Engagement," SocArXiv 36r2d, Center for Open Science.
- Kun Sun & Rong Wang, 2022. "The Evolutionary Pattern of Language in English Fiction Over the Last Two Centuries: Insights From Linguistic Concreteness and Imageability," SAGE Open, , vol. 12(1), pages 21582440211, January.
- Sudeep Bhatia, 2019. "Predicting Risk Perception: New Insights from Data Science," Management Science, INFORMS, vol. 65(8), pages 3800-3823, August.
- Stefan Feuerriegel & Mateusz Dolata & Gerhard Schwabe, 2020. "Fair AI," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 62(4), pages 379-384, August.
- Huimin Xu & Zhang Zhang & Lingfei Wu & Cheng-Jun Wang, 2019. "The Cinderella Complex: Word embeddings reveal gender stereotypes in movies and books," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-18, November.
- Ahmed Abbasi & Jeffrey Parsons & Gautam Pant & Olivia R. Liu Sheng & Suprateek Sarker, 2024. "Pathways for Design Research on Artificial Intelligence," Information Systems Research, INFORMS, vol. 35(2), pages 441-459, June.
- Antonio De Nicola & Gregorio D’Agostino, 2021. "Assessment of gender divide in scientific communities," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 3807-3840, May.
- Ash, Elliott & Durante, Ruben & Grebenshchikova, Mariia & Schwarz, Carlo, 2022.
"Visual Representation and Stereotypes in News Media,"
CEPR Discussion Papers
16624, C.E.P.R. Discussion Papers.
- Elliott Ash & Ruben Durante & Maria Grebenshchikova & Carlo Schwarz, 2022. "Visual Representation and Stereotypes in News Media," CESifo Working Paper Series 9686, CESifo.
- Martin Baumgaertner & Johannes Zahner, 2021.
"Whatever it takes to understand a central banker - Embedding their words using neural networks,"
MAGKS Papers on Economics
202130, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
- Zahner, Johannes & Baumgärtner, Martin, 2022. "Whatever it Takes to Understand a Central Banker – Embedding their Words Using Neural Networks," VfS Annual Conference 2022 (Basel): Big Data in Economics 264019, Verein für Socialpolitik / German Economic Association.
- Kim, Jae Yeon, 2021. "Power, Hate Speech, Machine Learning, and Intersectional Approach," SocArXiv chvgp, Center for Open Science.
- Marozzi, Armando, 2021. "The ECB's tracker: nowcasting the press conferences of the ECB," Working Paper Series 2609, European Central Bank.
- Duede, Eamon & Teplitskiy, Misha & Lakhani, Karim & Evans, James, 2024. "Being together in place as a catalyst for scientific advance," Research Policy, Elsevier, vol. 53(2).
- Dustin S. Stoltz & Marshall A. Taylor, 2019. "Concept Mover’s Distance: measuring concept engagement via word embeddings in texts," Journal of Computational Social Science, Springer, vol. 2(2), pages 293-313, July.
- Kim, Lanu & Smith, Daniel Scott & Hofstra, Bas & McFarland, Daniel A., 2022. "Gendered knowledge in fields and academic careers," Research Policy, Elsevier, vol. 51(1).
- Kun Sun & Haitao Liu & Wenxin Xiong, 2021. "The evolutionary pattern of language in scientific writings: A case study of Philosophical Transactions of Royal Society (1665–1869)," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1695-1724, February.
- Alex Luscombe & Kevin Dick & Kevin Walby, 2022. "Algorithmic thinking in the public interest: navigating technical, legal, and ethical hurdles to web scraping in the social sciences," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(3), pages 1023-1044, June.
- Chenyu Zheng, 2020. "Comparisons of the City Brand Influence of Global Cities: Word-Embedding Based Semantic Mining and Clustering Analysis on the Big Data of GDELT Global News Knowledge Graph," Sustainability, MDPI, vol. 12(16), pages 1-18, August.
- Haochuan Cui & Tiewei Li & Cheng-Jun Wang, 2023. "Climbing up the ladder of abstraction: how to span the boundaries of knowledge space in the online knowledge market?," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-12, December.
- Atefeh Fathi & Usama El-Awad & Tilman Reinelt & Franz Petermann, 2018. "A Brief Introduction to the Multidimensional Intercultural Training Acculturation Model (MITA) for Middle Eastern Adolescent Refugees," IJERPH, MDPI, vol. 15(7), pages 1-14, July.
- Batabyal, Amitrajeet & Nijkamp, Peter, 2022. "Introduction to The Creative Class Revisited: New Analytical Advances," MPRA Paper 114163, University Library of Munich, Germany, revised 10 Aug 2022.
More about this item
Keywords
Concept mover’s distance; Geometry of culture; Word embeddings; Text analysis; Cultural sociology; Natural language processing;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcsosc:v:4:y:2021:i:1:d:10.1007_s42001-020-00075-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.