IDEAS home Printed from https://ideas.repec.org/a/spr/jcsosc/v1y2018i1d10.1007_s42001-017-0006-5.html
   My bibliography  Save this article

Analytical sociology and computational social science

Author

Listed:
  • Marc Keuschnigg

    (Linköping University)

  • Niclas Lovsjö

    (Linköping University)

  • Peter Hedström

    (Linköping University)

Abstract

Analytical sociology focuses on social interactions among individuals and the hard-to-predict aggregate outcomes they bring about. It seeks to identify generalizable mechanisms giving rise to emergent properties of social systems which, in turn, feed back on individual decision-making. This research program benefits from computational tools such as agent-based simulations, machine learning, and large-scale web experiments, and has considerable overlap with the nascent field of computational social science. By providing relevant analytical tools to rigorously address sociology’s core questions, computational social science has the potential to advance sociology in a similar way that the introduction of econometrics advanced economics during the last half century. Computational social scientists from computer science and physics often see as their main task to establish empirical regularities which they view as “social laws.” From the perspective of the social sciences, references to social laws appear unfounded and misplaced, however, and in this article we outline how analytical sociology, with its theory-grounded approach to computational social science, can help to move the field forward from mere descriptions and predictions to the explanation of social phenomena.

Suggested Citation

  • Marc Keuschnigg & Niclas Lovsjö & Peter Hedström, 2018. "Analytical sociology and computational social science," Journal of Computational Social Science, Springer, vol. 1(1), pages 3-14, January.
  • Handle: RePEc:spr:jcsosc:v:1:y:2018:i:1:d:10.1007_s42001-017-0006-5
    DOI: 10.1007/s42001-017-0006-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42001-017-0006-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42001-017-0006-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Angus Deaton, 2010. "Instruments, Randomization, and Learning about Development," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 424-455, June.
    2. Xavier Gabaix, 2016. "Power Laws in Economics: An Introduction," Journal of Economic Perspectives, American Economic Association, vol. 30(1), pages 185-206, Winter.
    3. Peter Hedström & Gianluca Manzo, 2015. "Recent Trends in Agent-based Computational Research," Sociological Methods & Research, , vol. 44(2), pages 179-185, May.
    4. Grimmer, Justin, 2010. "A Bayesian Hierarchical Topic Model for Political Texts: Measuring Expressed Agendas in Senate Press Releases," Political Analysis, Cambridge University Press, vol. 18(1), pages 1-35, January.
    5. Jose Cadena & Gizem Korkmaz & Chris J Kuhlman & Achla Marathe & Naren Ramakrishnan & Anil Vullikanti, 2015. "Forecasting Social Unrest Using Activity Cascades," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-27, June.
    6. Manski, Charles F., 2013. "Public Policy in an Uncertain World: Analysis and Decisions," Economics Books, Harvard University Press, number 9780674066892, Spring.
    7. W. Brian Arthur, 1994. "Inductive Reasoning, Bounded Rationality and the Bar Problem," Working Papers 94-03-014, Santa Fe Institute.
    8. Jose L Herrera & Ravi Srinivasan & John S Brownstein & Alison P Galvani & Lauren Ancel Meyers, 2016. "Disease Surveillance on Complex Social Networks," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-16, July.
    9. Arthur, W Brian, 1994. "Inductive Reasoning and Bounded Rationality," American Economic Review, American Economic Association, vol. 84(2), pages 406-411, May.
    10. Elizabeth Bruch & Jon Atwell, 2015. "Agent-Based Models in Empirical Social Research," Sociological Methods & Research, , vol. 44(2), pages 186-221, May.
    11. Donald B. Rubin, 2005. "Causal Inference Using Potential Outcomes: Design, Modeling, Decisions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 322-331, March.
    12. H. Peyton Young, 2009. "Innovation Diffusion in Heterogeneous Populations: Contagion, Social Influence, and Social Learning," American Economic Review, American Economic Association, vol. 99(5), pages 1899-1924, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Przepiorka, Wojtek, 2022. "Testing sociological theories with digital trace data from online markets," SocArXiv ed2xc, Center for Open Science.
    2. Tobias Blanke & Tommaso Venturini, 2022. "A network view on reliability: using machine learning to understand how we assess news websites," Journal of Computational Social Science, Springer, vol. 5(1), pages 69-88, May.
    3. Enayat, Taha & Mehrani Ardebili, Mohsen & Reyhani Kivi, Ramtin & Amjadi, Bahador & Jamali, Yousef, 2022. "A computational approach to Homans Social Exchange Theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    4. Alex Luscombe & Kevin Dick & Kevin Walby, 2022. "Algorithmic thinking in the public interest: navigating technical, legal, and ethical hurdles to web scraping in the social sciences," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(3), pages 1023-1044, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deaton, Angus & Cartwright, Nancy, 2018. "Understanding and misunderstanding randomized controlled trials," Social Science & Medicine, Elsevier, vol. 210(C), pages 2-21.
    2. Maria Minniti & William Bygrave, 2001. "A Dynamic Model of Entrepreneurial Learning," Entrepreneurship Theory and Practice, , vol. 25(3), pages 5-16, April.
    3. Bell, Peter N, 2013. "New Testing Procedures to Assess Market Efficiency with Trading Rules," MPRA Paper 46701, University Library of Munich, Germany.
    4. Alberto Abadie & Susan Athey & Guido W. Imbens & Jeffrey M. Wooldridge, 2020. "Sampling‐Based versus Design‐Based Uncertainty in Regression Analysis," Econometrica, Econometric Society, vol. 88(1), pages 265-296, January.
    5. Luis Alfonso Dau & Aya S. Chacar & Marjorie A. Lyles & Jiatao Li, 2022. "Informal institutions and international business: Toward an integrative research agenda," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 53(6), pages 985-1010, August.
    6. Giuseppe Pernagallo & Benedetto Torrisi, 2020. "A theory of information overload applied to perfectly efficient financial markets," Review of Behavioral Finance, Emerald Group Publishing Limited, vol. 14(2), pages 223-236, October.
    7. Sergeeva, Anastasia & Bhardwaj, Akhil & Dimov, Dimo, 2021. "In the heat of the game: Analogical abduction in a pragmatist account of entrepreneurial reasoning," Journal of Business Venturing, Elsevier, vol. 36(6).
    8. Ciarli, Tommaso & Ràfols, Ismael, 2019. "The relation between research priorities and societal demands: The case of rice," Research Policy, Elsevier, vol. 48(4), pages 949-967.
    9. Wawrzyniak, Karol & Wiślicki, Wojciech, 2012. "Mesoscopic approach to minority games in herd regime," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2056-2082.
    10. Scott C. Linn & Nicholas S. P. Tay, 2007. "Complexity and the Character of Stock Returns: Empirical Evidence and a Model of Asset Prices Based on Complex Investor Learning," Management Science, INFORMS, vol. 53(7), pages 1165-1180, July.
    11. Alan Kirman & François Laisney & Paul Pezanis-Christou, 2023. "Relaxing the symmetry assumption in participation games: a specification test for cluster-heterogeneity," Experimental Economics, Springer;Economic Science Association, vol. 26(4), pages 850-878, September.
    12. Andrew W. Bausch, 2014. "Evolving intergroup cooperation," Computational and Mathematical Organization Theory, Springer, vol. 20(4), pages 369-393, December.
    13. Agnieszka Wiszniewska-Matyszkiel, 2016. "Belief distorted Nash equilibria: introduction of a new kind of equilibrium in dynamic games with distorted information," Annals of Operations Research, Springer, vol. 243(1), pages 147-177, August.
    14. Challet, Damien & Zhang, Yi-Cheng, 1998. "On the minority game: Analytical and numerical studies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 256(3), pages 514-532.
    15. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical regularities of order placement in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3173-3182.
    16. Gian Italo Bischi & Ugo Merlone, 2017. "Evolutionary minority games with memory," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 859-875, November.
    17. Salle, Isabelle & Yildizoglu, Murat & Zumpe, Martin & Sénégas, Marc-Alexandre, 2017. "Coordination through social learning in a general equilibrium model," Journal of Economic Behavior & Organization, Elsevier, vol. 141(C), pages 64-82.
    18. Susan Athey & Raj Chetty & Guido Imbens, 2020. "Combining Experimental and Observational Data to Estimate Treatment Effects on Long Term Outcomes," Papers 2006.09676, arXiv.org.
    19. Tanimoto, Jun & Nakamura, Kousuke, 2016. "Social dilemma structure hidden behind traffic flow with route selection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 92-99.
    20. Benjamin Patrick Evans & Mikhail Prokopenko, 2021. "Bounded rationality for relaxing best response and mutual consistency: The Quantal Hierarchy model of decision-making," Papers 2106.15844, arXiv.org, revised Mar 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcsosc:v:1:y:2018:i:1:d:10.1007_s42001-017-0006-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.