IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/vyid10.1007_s10878-019-00484-0.html
   My bibliography  Save this article

A novel kernel-free nonlinear SVM for semi-supervised classification in disease diagnosis

Author

Listed:
  • Xin Yan

    (Shanghai University of International Business and Economics)

  • Hongmiao Zhu

    (Shanghai University of International Business and Economics)

  • Jian Luo

    (Dongbei University of Finance and Economics)

Abstract

Semi-supervised classification methods are widely-used and attractive for dealing with both labeled and unlabeled data in real-world problems. In this paper, a novel kernel-free Laplacian twin support vector machine method is proposed for semi-supervised classification. Its main idea is to classify data points into two classes by constructing two nonparallel quadratic surfaces so that each surface is close to one class of points and far away from the other class of points. The proposed method not only saves much computational time by avoiding choosing a kernel function and its related parameters in the classical support vector machine, but also addresses the issue of computational complexity by adopting manifold regularization technique. Moreover, two small-sized convex quadratic programming problems need to be solved to implement the proposed method, which is much easier than solving the non-convex problem of mixed integer programming to implement the well-known semi-supervised support vector machine. Finally, the numerical results on some artificial and benchmark data sets validate the competitive performance of proposed method in terms of efficiency, classification accuracy and generalization ability, by comparing to well-known semi-supervised methods. In particular, the proposed method handles five benchmarking disease diagnosis problems well and efficiently, which indicates the potential of proposed method in diagnosing and forecasting the diseases.

Suggested Citation

  • Xin Yan & Hongmiao Zhu & Jian Luo, 0. "A novel kernel-free nonlinear SVM for semi-supervised classification in disease diagnosis," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-18.
  • Handle: RePEc:spr:jcomop:v::y::i::d:10.1007_s10878-019-00484-0
    DOI: 10.1007/s10878-019-00484-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-019-00484-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-019-00484-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei Gao & Wuping Bao & Xin Zhou, 2019. "Analysis of cough detection index based on decision tree and support vector machine," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 375-384, January.
    2. Jian Luo & Shu-Cherng Fang & Zhibin Deng & Xiaoling Guo, 2016. "Soft Quadratic Surface Support Vector Machine for Binary Classification," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(06), pages 1-22, December.
    3. Xi Chen & Zhiping Fan & Zhiwu Li & Xueliang Han & Xiao Zhang & Haochen Jia, 2015. "A two-stage method for member selection of emergency medical service," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 871-891, November.
    4. Yanqin Bai & Xiao Han & Tong Chen & Hua Yu, 2015. "Quadratic kernel-free least squares support vector machine for target diseases classification," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 850-870, November.
    5. Luo, Jian & Hong, Tao & Fang, Shu-Cherng, 2018. "Benchmarking robustness of load forecasting models under data integrity attacks," International Journal of Forecasting, Elsevier, vol. 34(1), pages 89-104.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Yan & Hongmiao Zhu & Jian Luo, 2021. "A novel kernel-free nonlinear SVM for semi-supervised classification in disease diagnosis," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 948-965, November.
    2. Gao, Zheming & Fang, Shu-Cherng & Luo, Jian & Medhin, Negash, 2021. "A kernel-free double well potential support vector machine with applications," European Journal of Operational Research, Elsevier, vol. 290(1), pages 248-262.
    3. Luo, Jian & Hong, Tao & Gao, Zheming & Fang, Shu-Cherng, 2023. "A robust support vector regression model for electric load forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 1005-1020.
    4. Jian Luo & Yukai Zheng & Tao Hong & An Luo & Xueqi Yang, 2024. "Fuzzy support vector regressions for short-term load forecasting," Fuzzy Optimization and Decision Making, Springer, vol. 23(3), pages 363-385, September.
    5. Gang Du & Xi Liang & Xiaoling Ouyang & Chunming Wang, 0. "Risk prediction of hypertension complications based on the intelligent algorithm optimized Bayesian network," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-22.
    6. He Huang & Wei Gao & Chunming Ye, 2021. "An intelligent data-driven model for disease diagnosis based on machine learning theory," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 884-895, November.
    7. He Huang & Wei Gao & Chunming Ye, 0. "An intelligent data-driven model for disease diagnosis based on machine learning theory," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-12.
    8. Gang Du & Xi Liang & Xiaoling Ouyang & Chunming Wang, 2021. "Risk prediction of hypertension complications based on the intelligent algorithm optimized Bayesian network," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 966-987, November.
    9. He Huang & Po-Chou Shih & Yuelan Zhu & Wei Gao, 2022. "An integrated model for medical expense system optimization during diagnosis process based on artificial intelligence algorithm," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2515-2532, November.
    10. Monika Zimmermann & Florian Ziel, 2024. "Efficient mid-term forecasting of hourly electricity load using generalized additive models," Papers 2405.17070, arXiv.org.
    11. Zhiguo Wang & Lufei Huang & Cici Xiao He, 2021. "A multi-objective and multi-period optimization model for urban healthcare waste’s reverse logistics network design," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 785-812, November.
    12. Feng, Qianqian & Sun, Xiaolei & Hao, Jun & Li, Jianping, 2021. "Predictability dynamics of multifactor-influenced installed capacity: A perspective of country clustering," Energy, Elsevier, vol. 214(C).
    13. Hao Hao & Ji Zhang & Qian Zhang & Li Yao & Yichen Sun, 2021. "Improved gray neural network model for healthcare waste recycling forecasting," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 813-830, November.
    14. Wei Gao & Wuping Bao & Xin Zhou, 2019. "Analysis of cough detection index based on decision tree and support vector machine," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 375-384, January.
    15. Xuerui Gao & Yanqin Bai & Qian Li, 2021. "A sparse optimization problem with hybrid $$L_2{\text {-}}L_p$$ L 2 - L p regularization for application of magnetic resonance brain images," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 760-784, November.
    16. Jing Yu & Lining Xing & Xu Tan, 0. "The new treatment mode research of hepatitis B based on ant colony algorithm," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-20.
    17. Fahd A. Alturki & Emad Mahrous Awwad, 2021. "Sizing and Cost Minimization of Standalone Hybrid WT/PV/Biomass/Pump-Hydro Storage-Based Energy Systems," Energies, MDPI, vol. 14(2), pages 1-20, January.
    18. Hany Habbak & Mohamed Mahmoud & Khaled Metwally & Mostafa M. Fouda & Mohamed I. Ibrahem, 2023. "Load Forecasting Techniques and Their Applications in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
    19. Ruiping Wang & Mei Wang & Jian Chang & Zai Luo & Feng Zhang & Chen Huang, 2021. "An optimized approach of venous thrombus embolism risk assessment," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 1053-1063, November.
    20. Bin Li & Qianghua Wei & Xinye Zhou, 2021. "Research on model and algorithm of TCM constitution identification based on artificial intelligence," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 988-1003, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v::y::i::d:10.1007_s10878-019-00484-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.