IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v49y2025i2d10.1007_s10878-024-01252-5.html
   My bibliography  Save this article

Recognizing integrality of weighted rectangles partitions

Author

Listed:
  • Paul Deuker

    (Tilburg University)

  • Ulf Friedrich

    (Otto von Guericke University Magdeburg)

Abstract

Given a grid of active and inactive pixels, the weighted rectangles partitioning (WRP) problem is to find a maximum-weight partition of the active pixels into rectangles. WRP is formulated as an integer programming problem and instances with an integral relaxation polyhedron are characterized by a balanced problem matrix. A complete characterization of these balanced instances is proved. In addition, computational results on balancedness recognition and on solving WRP are presented.

Suggested Citation

  • Paul Deuker & Ulf Friedrich, 2025. "Recognizing integrality of weighted rectangles partitions," Journal of Combinatorial Optimization, Springer, vol. 49(2), pages 1-15, March.
  • Handle: RePEc:spr:jcomop:v:49:y:2025:i:2:d:10.1007_s10878-024-01252-5
    DOI: 10.1007/s10878-024-01252-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-024-01252-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-024-01252-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Claire Kenyon & Eric Rémila, 2000. "A Near-Optimal Solution to a Two-Dimensional Cutting Stock Problem," Mathematics of Operations Research, INFORMS, vol. 25(4), pages 645-656, November.
    2. Lodi, Andrea & Martello, Silvano & Monaci, Michele, 2002. "Two-dimensional packing problems: A survey," European Journal of Operational Research, Elsevier, vol. 141(2), pages 241-252, September.
    3. P. C. Gilmore & R. E. Gomory, 1965. "Multistage Cutting Stock Problems of Two and More Dimensions," Operations Research, INFORMS, vol. 13(1), pages 94-120, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. W. D. D. Madhavee & N. Saldin & U. C. Vaidyarathna & C. J. Jayawardene, 2018. "A Practical Application of the Generalized Cutting Stock Algorithm," Academic Journal of Applied Mathematical Sciences, Academic Research Publishing Group, vol. 4(3), pages 15-21, 03-2018.
    2. Alberto Caprara, 2008. "Packing d -Dimensional Bins in d Stages," Mathematics of Operations Research, INFORMS, vol. 33(1), pages 203-215, February.
    3. Morabito, Reinaldo & Belluzzo, Luciano, 2007. "Optimising the cutting of wood fibre plates in the hardboard industry," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1405-1420, December.
    4. Furini, Fabio & Malaguti, Enrico & Medina Durán, Rosa & Persiani, Alfredo & Toth, Paolo, 2012. "A column generation heuristic for the two-dimensional two-staged guillotine cutting stock problem with multiple stock size," European Journal of Operational Research, Elsevier, vol. 218(1), pages 251-260.
    5. Michele Monaci & Paolo Toth, 2006. "A Set-Covering-Based Heuristic Approach for Bin-Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 18(1), pages 71-85, February.
    6. Imahori, S. & Yagiura, M. & Ibaraki, T., 2005. "Improved local search algorithms for the rectangle packing problem with general spatial costs," European Journal of Operational Research, Elsevier, vol. 167(1), pages 48-67, November.
    7. Mateus Martin & Horacio Hideki Yanasse & Maristela O. Santos & Reinaldo Morabito, 2024. "Models for two-dimensional bin packing problems with customer order spread," Journal of Combinatorial Optimization, Springer, vol. 48(1), pages 1-27, August.
    8. Silva, Elsa & Alvelos, Filipe & Valério de Carvalho, J.M., 2010. "An integer programming model for two- and three-stage two-dimensional cutting stock problems," European Journal of Operational Research, Elsevier, vol. 205(3), pages 699-708, September.
    9. Ben Messaoud, Said & Chu, Chengbin & Espinouse, Marie-Laure, 2008. "Characterization and modelling of guillotine constraints," European Journal of Operational Research, Elsevier, vol. 191(1), pages 112-126, November.
    10. Sônia Poltroniere & Kelly Poldi & Franklina Toledo & Marcos Arenales, 2008. "A coupling cutting stock-lot sizing problem in the paper industry," Annals of Operations Research, Springer, vol. 157(1), pages 91-104, January.
    11. Heiner Ackermann & Erik Diessel, 2020. "A hierarchical approach for solving an integrated packing and sequence-optimization problem in production of glued laminated timber," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 263-288, October.
    12. Hadjiconstantinou, Eleni & Iori, Manuel, 2007. "A hybrid genetic algorithm for the two-dimensional single large object placement problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1150-1166, December.
    13. Rapine, Christophe & Pedroso, Joao Pedro & Akbalik, Ayse, 2022. "The two-dimensional knapsack problem with splittable items in stacks," Omega, Elsevier, vol. 112(C).
    14. M. Hifi & R. M’Hallah & T. Saadi, 2009. "Approximate and exact algorithms for the double-constrained two-dimensional guillotine cutting stock problem," Computational Optimization and Applications, Springer, vol. 42(2), pages 303-326, March.
    15. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    16. Fabio Furini & Enrico Malaguti & Dimitri Thomopulos, 2016. "Modeling Two-Dimensional Guillotine Cutting Problems via Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 736-751, November.
    17. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    18. Alberto Caprara & Andrea Lodi & Michele Monaci, 2005. "Fast Approximation Schemes for Two-Stage, Two-Dimensional Bin Packing," Mathematics of Operations Research, INFORMS, vol. 30(1), pages 150-172, February.
    19. Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2016. "Bin packing and cutting stock problems: Mathematical models and exact algorithms," European Journal of Operational Research, Elsevier, vol. 255(1), pages 1-20.
    20. Hadj Salem, Khadija & Silva, Elsa & Oliveira, José Fernando & Carravilla, Maria Antónia, 2023. "Mathematical models for the two-dimensional variable-sized cutting stock problem in the home textile industry," European Journal of Operational Research, Elsevier, vol. 306(2), pages 549-566.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:49:y:2025:i:2:d:10.1007_s10878-024-01252-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.