IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v49y2025i1d10.1007_s10878-024-01233-8.html
   My bibliography  Save this article

A novel arctic fox survival strategy inspired optimization algorithm

Author

Listed:
  • E. Subha

    (Karpagam College of Engineering)

  • V. Jothi Prakash

    (Karpagam College of Engineering)

  • S. Arul Antran Vijay

    (Karpagam College of Engineering)

Abstract

In the field of optimization algorithms, nature-inspired techniques have garnered attention for their adaptability and problem-solving prowess. This research introduces the Arctic Fox Algorithm (AFA), an innovative optimization technique inspired by the adaptive survival strategies of the Arctic fox, designed to excel in dynamic and complex optimization landscapes. Incorporating gradient flow dynamics, stochastic differential equations, and probability distributions, AFA is equipped to adjust its search strategies dynamically, enhancing both exploration and exploitation capabilities. Through rigorous evaluation on a set of 25 benchmark functions, AFA consistently outperformed established algorithms particularly in scenarios involving high-dimensional and multi-modal problems, demonstrating faster convergence and improved solution quality. Application of AFA to real-world problems, including wind farm layout optimization and financial portfolio optimization, highlighted its ability to increase energy outputs by up to 15% and improve portfolio Sharpe ratios by 20% compared to conventional methods. These results showcase AFA’s potential as a robust tool for complex optimization tasks, paving the way for future research focused on refining its adaptive mechanisms and exploring broader applications.

Suggested Citation

  • E. Subha & V. Jothi Prakash & S. Arul Antran Vijay, 2025. "A novel arctic fox survival strategy inspired optimization algorithm," Journal of Combinatorial Optimization, Springer, vol. 49(1), pages 1-73, January.
  • Handle: RePEc:spr:jcomop:v:49:y:2025:i:1:d:10.1007_s10878-024-01233-8
    DOI: 10.1007/s10878-024-01233-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-024-01233-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-024-01233-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kutlu Onay, Funda, 2023. "A novel improved chef-based optimization algorithm with Gaussian random walk-based diffusion process for global optimization and engineering problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 195-223.
    2. Zakamouline, Valeri & Koekebakker, Steen, 2009. "Portfolio performance evaluation with generalized Sharpe ratios: Beyond the mean and variance," Journal of Banking & Finance, Elsevier, vol. 33(7), pages 1242-1254, July.
    3. Nikolai A. Magnitskii, 2023. "Universal Bifurcation Chaos Theory and Its New Applications," Mathematics, MDPI, vol. 11(11), pages 1-20, May.
    4. Ayesha Sohail, 2023. "Genetic Algorithms in the Fields of Artificial Intelligence and Data Sciences," Annals of Data Science, Springer, vol. 10(4), pages 1007-1018, August.
    5. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2023. "Deep stochastic optimization in finance," Digital Finance, Springer, vol. 5(1), pages 91-111, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fong, Wai Mun, 2013. "Footprints in the market: Hedge funds and the carry trade," Journal of International Money and Finance, Elsevier, vol. 33(C), pages 41-59.
    2. Massimiliano Caporin & Grégory M. Jannin & Francesco Lisi & Bertrand B. Maillet, 2014. "A Survey On The Four Families Of Performance Measures," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 917-942, December.
    3. Irina Georgescu, 2018. "The Effect of Prudence on the Optimal Allocation in Possibilistic and Mixed Models," Mathematics, MDPI, vol. 6(8), pages 1-19, August.
    4. Michele Costola & Massimiliano Caporin, 2016. "Rational Learning For Risk-Averse Investors By Conditioning On Behavioral Choices," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 1-26, March.
    5. Kang, Yan-li & Tian, Jing-Song & Chen, Chen & Zhao, Gui-Yu & Li, Yuan-fu & Wei, Yu, 2021. "Entropy based robust portfolio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    6. Lassance, Nathan & Vrins, Frédéric, 2021. "Portfolio selection with parsimonious higher comoments estimation," Journal of Banking & Finance, Elsevier, vol. 126(C).
    7. Fischer, Thomas & Lundtofte, Frederik, 2020. "Unequal returns: Using the Atkinson index to measure financial risk," Journal of Banking & Finance, Elsevier, vol. 116(C).
    8. Kerstens, Kristiaan & Mounir, Amine & de Woestyne, Ignace Van, 2011. "Non-parametric frontier estimates of mutual fund performance using C- and L-moments: Some specification tests," Journal of Banking & Finance, Elsevier, vol. 35(5), pages 1190-1201, May.
    9. Nikolay M. Evstigneev & Nikolai A. Magnitskii, 2023. "Bifurcation Analysis Software and Chaotic Dynamics for Some Problems in Fluid Dynamics Laminar–Turbulent Transition," Mathematics, MDPI, vol. 11(18), pages 1-25, September.
    10. Hyungbin Park, 2021. "Modified Mean-Variance Risk Measures for Long-Term Portfolios," Mathematics, MDPI, vol. 9(2), pages 1-23, January.
    11. Mohamed Arouri & Duc Khuong Nguyen & Kuntara Pukthuanthong, 2014. "Diversification benefits and strategic portfolio allocation across asset classes: The case of the US markets," Working Papers 2014-294, Department of Research, Ipag Business School.
    12. Boudt, Kris & Raza, Muhammad Wajid & Wauters, Marjan, 2019. "Evaluating the Shariah-compliance of equity portfolios: The weighting method matters," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 406-417.
    13. Yang, Fan & Havranek, Tomas & Irsova, Zuzana & Novak, Jiri, 2022. "Hedge Fund Performance: A Quantitative Survey," EconStor Preprints 260612, ZBW - Leibniz Information Centre for Economics.
    14. Geng Deng & Tim Dulaney & Craig McCann & Olivia Wang, 2013. "Robust portfolio optimization with Value-at-Risk-adjusted Sharpe ratios," Journal of Asset Management, Palgrave Macmillan, vol. 14(5), pages 293-305, October.
    15. Monica Billio & Bertrand Maillet & Loriana Pelizzon, 2022. "A meta-measure of performance related to both investors and investments characteristics," Annals of Operations Research, Springer, vol. 313(2), pages 1405-1447, June.
    16. Guidolin, Massimo & Hyde, Stuart, 2012. "Can VAR models capture regime shifts in asset returns? A long-horizon strategic asset allocation perspective," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 695-716.
    17. Niu, Cuizhen & Guo, Xu & McAleer, Michael & Wong, Wing-Keung, 2018. "Theory and application of an economic performance measure of risk," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 383-396.
    18. Muhammad Tahir & Sufyan Ali & Ayesha Sohail & Ying Zhang & Xiaohua Jin, 2024. "Unlocking Online Insights: LSTM Exploration and Transfer Learning Prospects," Annals of Data Science, Springer, vol. 11(4), pages 1421-1434, August.
    19. Jeonggyu Huh & Jaegi Jeon, 2024. "Pontryagin-Guided Policy Optimization for Merton's Portfolio Problem," Papers 2412.13101, arXiv.org, revised Jan 2025.
    20. Guy Meunier, 2014. "Risk Aversion and Technology Portfolios," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 44(4), pages 347-365, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:49:y:2025:i:1:d:10.1007_s10878-024-01233-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.