Exact lexicographic scheduling and approximate rescheduling
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ejor.2020.08.032
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- J. Cramer & M. A. Pollatschek, 1979. "Candidate to Job Allocation Problem with a Lexicographic Objective," Management Science, INFORMS, vol. 25(5), pages 466-473, May.
- Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
- Antony E. Phillips & Cameron G. Walker & Matthias Ehrgott & David M. Ryan, 2017. "Integer programming for minimal perturbation problems in university course timetabling," Annals of Operations Research, Springer, vol. 252(2), pages 283-304, May.
- Peter Sanders & Naveen Sivadasan & Martin Skutella, 2009. "Online Scheduling with Bounded Migration," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 481-498, May.
- SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Chassein, André & Goerigk, Marc & Kasperski, Adam & Zieliński, Paweł, 2018. "On recoverable and two-stage robust selection problems with budgeted uncertainty," European Journal of Operational Research, Elsevier, vol. 265(2), pages 423-436.
- Grani A. Hanasusanto & Daniel Kuhn & Wolfram Wiesemann, 2015. "K -Adaptability in Two-Stage Robust Binary Programming," Operations Research, INFORMS, vol. 63(4), pages 877-891, August.
- Sherali, Hanif D., 1982. "Equivalent weights for lexicographic multi-objective programs: Characterizations and computations," European Journal of Operational Research, Elsevier, vol. 11(4), pages 367-379, December.
- Hanan Luss, 1999. "On Equitable Resource Allocation Problems: A Lexicographic Minimax Approach," Operations Research, INFORMS, vol. 47(3), pages 361-378, June.
- Dritan Nace & James B. Orlin, 2007. "Lexicographically Minimum and Maximum Load Linear Programming Problems," Operations Research, INFORMS, vol. 55(1), pages 182-187, February.
- Ogryczak, Wlodzimierz, 1997. "On the lexicographic minimax approach to location problems," European Journal of Operational Research, Elsevier, vol. 100(3), pages 566-585, August.
- Warren Adams & Pietro Belotti & Ruobing Shen, 2016. "Convex hull characterizations of lexicographic orderings," Journal of Global Optimization, Springer, vol. 66(2), pages 311-329, October.
- Martin Skutella & José Verschae, 2016. "Robust Polynomial-Time Approximation Schemes for Parallel Machine Scheduling with Job Arrivals and Departures," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 991-1021, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dimitrios Letsios & Jeremy T. Bradley & Suraj G & Ruth Misener & Natasha Page, 2021. "Approximate and robust bounded job start scheduling for Royal Mail delivery offices," Journal of Scheduling, Springer, vol. 24(2), pages 237-258, April.
- Lorenzo Fiaschi & Marco Cococcioni, 2022. "A Non-Archimedean Interior Point Method and Its Application to the Lexicographic Multi-Objective Quadratic Programming," Mathematics, MDPI, vol. 10(23), pages 1-34, November.
- Guopeng Song & Roel Leus, 2022. "Parallel Machine Scheduling Under Uncertainty: Models and Exact Algorithms," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3059-3079, November.
- Pei, Zhi & Lu, Haimin & Jin, Qingwei & Zhang, Lianmin, 2022. "Target-based distributionally robust optimization for single machine scheduling," European Journal of Operational Research, Elsevier, vol. 299(2), pages 420-431.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dimitrios Letsios & Jeremy T. Bradley & Suraj G & Ruth Misener & Natasha Page, 2021. "Approximate and robust bounded job start scheduling for Royal Mail delivery offices," Journal of Scheduling, Springer, vol. 24(2), pages 237-258, April.
- Marc Goerigk & Adam Kasperski & Paweł Zieliński, 2022. "Robust two-stage combinatorial optimization problems under convex second-stage cost uncertainty," Journal of Combinatorial Optimization, Springer, vol. 43(3), pages 497-527, April.
- Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
- Islam Akaria & Leah Epstein, 2023. "Bin stretching with migration on two hierarchical machines," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 98(1), pages 111-153, August.
- Cohen, Izack & Postek, Krzysztof & Shtern, Shimrit, 2023. "An adaptive robust optimization model for parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 306(1), pages 83-104.
- Detienne, Boris & Lefebvre, Henri & Malaguti, Enrico & Monaci, Michele, 2024. "Adjustable robust optimization with objective uncertainty," European Journal of Operational Research, Elsevier, vol. 312(1), pages 373-384.
- J. N. Hooker & H. P. Williams, 2012. "Combining Equity and Utilitarianism in a Mathematical Programming Model," Management Science, INFORMS, vol. 58(9), pages 1682-1693, September.
- Feng, Wei & Feng, Yiping & Zhang, Qi, 2021. "Multistage robust mixed-integer optimization under endogenous uncertainty," European Journal of Operational Research, Elsevier, vol. 294(2), pages 460-475.
- Zhang Jiangao & Shitao Yang, 2016. "On the Lexicographic Centre of Multiple Objective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 600-614, February.
- Aakil M. Caunhye & Nazli Yonca Aydin & H. Sebnem Duzgun, 2020. "Robust post-disaster route restoration," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 1055-1087, December.
- Omar El Housni & Vineet Goyal, 2021. "On the Optimality of Affine Policies for Budgeted Uncertainty Sets," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 674-711, May.
- Buchheim, Christoph & Pruente, Jonas, 2019. "K-adaptability in stochastic combinatorial optimization under objective uncertainty," European Journal of Operational Research, Elsevier, vol. 277(3), pages 953-963.
- Portoleau, Tom & Artigues, Christian & Guillaume, Romain, 2024. "Robust decision trees for the multi-mode project scheduling problem with a resource investment objective and uncertain activity duration," European Journal of Operational Research, Elsevier, vol. 312(2), pages 525-540.
- Hanan Luss, 2010. "Equitable bandwidth allocation in content distribution networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(3), pages 266-278, April.
- Krumke, Sven O. & Schmidt, Eva & Streicher, Manuel, 2019. "Robust multicovers with budgeted uncertainty," European Journal of Operational Research, Elsevier, vol. 274(3), pages 845-857.
- Rodrigues, Filipe & Agra, Agostinho, 2021. "An exact robust approach for the integrated berth allocation and quay crane scheduling problem under uncertain arrival times," European Journal of Operational Research, Elsevier, vol. 295(2), pages 499-516.
- Kostreva, Michael M. & Ogryczak, Wlodzimierz & Wierzbicki, Adam, 2004. "Equitable aggregations and multiple criteria analysis," European Journal of Operational Research, Elsevier, vol. 158(2), pages 362-377, October.
- Berndt, Sebastian & Eberle, Franziska & Megow, Nicole, 2022. "Online load balancing with general reassignment cost," LSE Research Online Documents on Economics 114914, London School of Economics and Political Science, LSE Library.
- Bertsimas, Dimitris & Ng, Yeesian, 2019. "Robust and stochastic formulations for ambulance deployment and dispatch," European Journal of Operational Research, Elsevier, vol. 279(2), pages 557-571.
- Jannis Kurtz, 2018. "Robust combinatorial optimization under budgeted–ellipsoidal uncertainty," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 315-337, December.
More about this item
Keywords
Scheduling; Lexicographic optimization; Exact MILP methods; Robust optimization; Price of robustness;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:290:y:2021:i:2:p:469-478. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.