IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v41y2021i2d10.1007_s10878-020-00684-z.html
   My bibliography  Save this article

Group level social media popularity prediction by MRGB and Adam optimization

Author

Listed:
  • Navdeep Bohra

    (GGSIPU
    Maharaja Surajmal Institute of Technology)

  • Vishal Bhatnagar

    (NSUT (Formally Ambedkar Institute Of Advanced Communication Technologies And Research))

Abstract

Social media has become a tremendous source to bring in new clients. Sharing posts for new offers/products to get extensive client engagement can be predicted by grouping the users based on their previous interactions. In this paper, we improve existing state-of-the-art techniques to predict group-level popularity by extending the data clustering approach and constraint network prediction using stochastic Adam optimization. Various other topological properties of this two-level approach are also tested. The Adam optimization for clustered group prediction improves the relative error substantially. Overall, the proposed novel approach improved the prediction popularity accuracy by a significant difference of 18.21%.

Suggested Citation

  • Navdeep Bohra & Vishal Bhatnagar, 2021. "Group level social media popularity prediction by MRGB and Adam optimization," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 328-347, February.
  • Handle: RePEc:spr:jcomop:v:41:y:2021:i:2:d:10.1007_s10878-020-00684-z
    DOI: 10.1007/s10878-020-00684-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-020-00684-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-020-00684-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moro, Sérgio & Rita, Paulo & Vala, Bernardo, 2016. "Predicting social media performance metrics and evaluation of the impact on brand building: A data mining approach," Journal of Business Research, Elsevier, vol. 69(9), pages 3341-3351.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Yi & You, Ya & Chen, Qimei, 2020. "Our conditional love for the underdog: The effect of brand positioning and the lay theory of achievement on WOM," Journal of Business Research, Elsevier, vol. 118(C), pages 210-222.
    2. Mustofa Rochman Hadi, 2020. "Is Big Data Security Essential for Students to Understand?," HOLISTICA – Journal of Business and Public Administration, Sciendo, vol. 11(2), pages 161-170, August.
    3. Shahbaznezhad, Hamidreza & Dolan, Rebecca & Rashidirad, Mona, 2021. "The Role of Social Media Content Format and Platform in Users' Engagement Behavior," Journal of Interactive Marketing, Elsevier, vol. 53(C), pages 47-65.
    4. Shianghau Wu, 2020. "A Fuzzy Association Rules Mining Analysis of the Influencing Factors on the Failure of oBike in Taiwan," Mathematics, MDPI, vol. 8(11), pages 1-18, October.
    5. Sabih Ahmad Khan & Hsien-Tsung Chang, 2019. "Comparative analysis on Facebook post interaction using DNN, ELM and LSTM," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-26, November.
    6. Lauri Valkonen & Jouni Helske & Juha Karvanen, 2023. "Estimating the causal effect of timing on the reach of social media posts," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(2), pages 493-507, June.
    7. Schaefers, Tobias & Falk, Tomas & Kumar, Ashish & Schamari, Julia, 2021. "More of the same? Effects of volume and variety of social media brand engagement behavior," Journal of Business Research, Elsevier, vol. 135(C), pages 282-294.
    8. Chawla, Yash & Chodak, Grzegorz, 2021. "Social media marketing for businesses: Organic promotions of web-links on Facebook," Journal of Business Research, Elsevier, vol. 135(C), pages 49-65.
    9. Rakshit, Sandip & Islam, Nazrul & Mondal, Sandeep & Paul, Tripti, 2022. "An integrated social network marketing metric for business-to-business SMEs," Journal of Business Research, Elsevier, vol. 150(C), pages 73-88.
    10. Gupta, Manjul & Uz, Irem & Esmaeilzadeh, Pouyan & Noboa, Fabrizio & Mahrous, Abeer A. & Kim, Eojina & Miranda, Graça & Tennant, Vanesa M. & Chung, Sean & Azam, Akbar & Peters, Anicia & Iraj, Hamideh &, 2018. "Do cultural norms affect social network behavior inappropriateness? A global study," Journal of Business Research, Elsevier, vol. 85(C), pages 10-22.
    11. Shakeel ul Rehman & Rafia Gulzar & Wajeeha Aslam, 2022. "Developing the Integrated Marketing Communication (IMC) through Social Media (SM): The Modern Marketing Communication Approach," SAGE Open, , vol. 12(2), pages 21582440221, May.
    12. Cynthia D. Wiggins, 2022. "Online customer engagement: a practical exploration of antecedents and metrics for new content marketers," SN Business & Economics, Springer, vol. 2(2), pages 1-24, February.
    13. Sheng, Jie & Amankwah-Amoah, Joseph & Wang, Xiaojun, 2017. "A multidisciplinary perspective of big data in management research," International Journal of Production Economics, Elsevier, vol. 191(C), pages 97-112.
    14. Shijie Guo & Shufeng Tang & Dongsheng Zhang, 2019. "A Recognition Methodology for the Key Geometric Errors of a Multi-Axis Machine Tool Based on Accuracy Retentivity Analysis," Complexity, Hindawi, vol. 2019, pages 1-21, November.
    15. Moro, Sérgio & Pires, Guilherme & Rita, Paulo & Cortez, Paulo, 2020. "A cross-cultural case study of consumers' communications about a new technological product," Journal of Business Research, Elsevier, vol. 121(C), pages 438-447.
    16. Moro, Sérgio & Pires, Guilherme & Rita, Paulo & Cortez, Paulo, 2019. "A text mining and topic modelling perspective of ethnic marketing research," Journal of Business Research, Elsevier, vol. 103(C), pages 275-285.
    17. Siyam, Nur & Alqaryouti, Omar & Abdallah, Sherief, 2020. "Mining government tweets to identify and predict citizens engagement," Technology in Society, Elsevier, vol. 60(C).
    18. Othman Boujena & Isabelle Ulrich & Aikaterini Manthiou & Bruno Godey, 2021. "Customer engagement and performance in social media: a managerial perspective," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(4), pages 965-987, December.
    19. Kaiser, Carolin & Ahuvia, Aaron & Rauschnabel, Philipp A. & Wimble, Matt, 2020. "Social media monitoring: What can marketers learn from Facebook brand photos?," Journal of Business Research, Elsevier, vol. 117(C), pages 707-717.
    20. Szu-Chuang Li & Yu-Ching Chen & Yi-Wen Chen & Yennun Huang, 2022. "Predicting Advertisement Revenue of Social-Media-Driven Content Websites: Toward More Efficient and Sustainable Social Media Posting," Sustainability, MDPI, vol. 14(7), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:41:y:2021:i:2:d:10.1007_s10878-020-00684-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.