IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v38y2019i1d10.1007_s10878-019-00381-6.html
   My bibliography  Save this article

Online interval scheduling on two related machines: the power of lookahead

Author

Listed:
  • Nicolas Pinson

    (ENS-Lyon)

  • Frits C. R. Spieksma

    (Eindhoven University of Technology)

Abstract

We consider an online interval scheduling problem on two related machines. If one machine is at least as twice as fast as the other machine, we say the machines are distinct; otherwise the machines are said to be similar. Each job $$j \in J$$ j ∈ J is characterized by a length $$p_j$$ p j , and an arrival time $$t_j$$ t j ; the question is to determine whether there exists a feasible schedule such that each job starts processing at its arrival time. For the case of unit-length jobs, we prove that when the two machines are distinct, there is an amount of lookahead allowing an online algorithm to solve the problem. When the two machines are similar, we show that no finite amount of lookahead is sufficient to solve the problem in an online fashion. We extend these results to jobs having arbitrary lengths, and consider an extension focused on minimizing total waiting time.

Suggested Citation

  • Nicolas Pinson & Frits C. R. Spieksma, 2019. "Online interval scheduling on two related machines: the power of lookahead," Journal of Combinatorial Optimization, Springer, vol. 38(1), pages 224-253, July.
  • Handle: RePEc:spr:jcomop:v:38:y:2019:i:1:d:10.1007_s10878-019-00381-6
    DOI: 10.1007/s10878-019-00381-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-019-00381-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-019-00381-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Passchyn, Ward & Briskorn, Dirk & Spieksma, Frits C.R., 2016. "Mathematical programming models for lock scheduling with an emission objective," European Journal of Operational Research, Elsevier, vol. 248(3), pages 802-814.
    2. Douglas Smith, L. & Nauss, Robert M. & Mattfeld, Dirk Christian & Li, Jian & Ehmke, Jan F. & Reindl, M., 2011. "Scheduling operations at system choke points with sequence-dependent delays and processing times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(5), pages 669-680, September.
    3. Passchyn, Ward & Coene, Sofie & Briskorn, Dirk & Hurink, Johann L. & Spieksma, Frits C.R. & Vanden Berghe, Greet, 2016. "The lockmaster’s problem," European Journal of Operational Research, Elsevier, vol. 251(2), pages 432-441.
    4. Stanley P. Y. Fung & Chung Keung Poon & Feifeng Zheng, 2008. "Online interval scheduling: randomized and multiprocessor cases," Journal of Combinatorial Optimization, Springer, vol. 16(3), pages 248-262, October.
    5. Antoon W.J. Kolen & Jan Karel Lenstra & Christos H. Papadimitriou & Frits C.R. Spieksma, 2007. "Interval scheduling: A survey," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(5), pages 530-543, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    2. Buchem, Moritz & Golak, Julian Arthur Pawel & Grigoriev, Alexander, 2022. "Vessel velocity decisions in inland waterway transportation under uncertainty," European Journal of Operational Research, Elsevier, vol. 296(2), pages 669-678.
    3. Golak, Julian Arthur Pawel & Defryn, Christof & Grigoriev, Alexander, 2022. "Optimizing fuel consumption on inland waterway networks: Local search heuristic for lock scheduling," Omega, Elsevier, vol. 109(C).
    4. Ward Passchyn & Frits C. R. Spieksma, 2019. "Scheduling parallel batching machines in a sequence," Journal of Scheduling, Springer, vol. 22(3), pages 335-357, June.
    5. Ji, Bin & Zhang, Dezhi & Yu, Samson S. & Zhang, Binqiao, 2021. "Optimally solving the generalized serial-lock scheduling problem from a graph-theory-based multi-commodity network perspective," European Journal of Operational Research, Elsevier, vol. 288(1), pages 47-62.
    6. Lijuan Yang & Eldon Y. Li & Yu Zhang, 2020. "Pricing and Subsidy Models for Transshipment Sustainability in the Three Gorges Dam Region of China," Sustainability, MDPI, vol. 12(17), pages 1-20, August.
    7. Ziyun Wu & Bin Ji & Samson S. Yu, 2024. "Modeling and Solution Algorithm for Green Lock Scheduling Problem on Inland Waterways," Mathematics, MDPI, vol. 12(8), pages 1-25, April.
    8. Ji, Bin & Zhang, Dezhi & Zhang, Zheng & Yu, Samson S. & Van Woensel, Tom, 2022. "The generalized serial-lock scheduling problem on inland waterway: A novel decomposition-based solution framework and efficient heuristic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    9. Elisabeth Lübbecke & Marco E. Lübbecke & Rolf H. Möhring, 2019. "Ship Traffic Optimization for the Kiel Canal," Operations Research, INFORMS, vol. 67(3), pages 791-812, May.
    10. Karsu, Özlem & Morton, Alec, 2015. "Inequity averse optimization in operational research," European Journal of Operational Research, Elsevier, vol. 245(2), pages 343-359.
    11. Ge Yu & Sheldon H. Jacobson, 2020. "Primal-dual analysis for online interval scheduling problems," Journal of Global Optimization, Springer, vol. 77(3), pages 575-602, July.
    12. Meghan Shanks & Ge Yu & Sheldon H. Jacobson, 2023. "Approximation algorithms for stochastic online matching with reusable resources," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 98(1), pages 43-56, August.
    13. Reinhardt, Line Blander & Pisinger, David & Sigurd, Mikkel M. & Ahmt, Jonas, 2020. "Speed optimizations for liner networks with business constraints," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1127-1140.
    14. Boysen, Nils & Briskorn, Dirk & Schwerdfeger, Stefan, 2019. "Matching supply and demand in a sharing economy: Classification, computational complexity, and application," European Journal of Operational Research, Elsevier, vol. 278(2), pages 578-595.
    15. Eisenberg, Julia & Krühner, Paul, 2018. "The impact of negative interest rates on optimal capital injections," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 1-10.
    16. Ons Sassi & Ammar Oulamara, 2017. "Electric vehicle scheduling and optimal charging problem: complexity, exact and heuristic approaches," International Journal of Production Research, Taylor & Francis Journals, vol. 55(2), pages 519-535, January.
    17. Martinovic, J. & Strasdat, N. & Valério de Carvalho, J. & Furini, F., 2023. "A combinatorial flow-based formulation for temporal bin packing problems," European Journal of Operational Research, Elsevier, vol. 307(2), pages 554-574.
    18. Akiyoshi Shioura & Natalia V. Shakhlevich & Vitaly A. Strusevich & Bernhard Primas, 2018. "Models and algorithms for energy-efficient scheduling with immediate start of jobs," Journal of Scheduling, Springer, vol. 21(5), pages 505-516, October.
    19. Diefenbach, Heiko & Emde, Simon & Glock, Christoph H., 2023. "Multi-depot electric vehicle scheduling in in-plant production logistics considering non-linear charging models," European Journal of Operational Research, Elsevier, vol. 306(2), pages 828-848.
    20. Di Martinelly, Christine & Meskens, Nadine, 2017. "A bi-objective integrated approach to building surgical teams and nurse schedule rosters to maximise surgical team affinities and minimise nurses' idle time," International Journal of Production Economics, Elsevier, vol. 191(C), pages 323-334.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:38:y:2019:i:1:d:10.1007_s10878-019-00381-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.