IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v36y2018i1d10.1007_s10878-018-0290-x.html
   My bibliography  Save this article

Approximation algorithms for the bus evacuation problem

Author

Listed:
  • Lehilton L. C. Pedrosa

    (University of Campinas)

  • Rafael C. S. Schouery

    (University of Campinas)

Abstract

We consider the bus evacuation problem. Given a positive integer B, a bipartite graph G with parts S and $$T \cup \{r\}$$ T ∪ { r } in a metric space and functions $$l_i :S \rightarrow {\mathbb {Z}}_+$$ l i : S → Z + and $${u_j :T \rightarrow \mathbb {Z}_+ \cup \{\infty \}}$$ u j : T → Z + ∪ { ∞ } , one wishes to find a set of B walks in G. Every walk in B should start at r and finish in T and r must be visited only once. Also, among all walks, each vertex i of S must be visited at least $$l_i$$ l i times and each vertex j of T must be visited at most $$u_j$$ u j times. The objective is to find a solution that minimizes the length of the longest walk. This problem arises in emergency planning situations where the walks correspond to the routes of B buses that must transport each group of people in S to a shelter in T, and the objective is to evacuate the entire population in the minimum amount of time. In this paper, we prove that approximating this problem by less than a constant is $$\text{ NP }$$ NP -hard and present a 10.2-approximation algorithm. Further, for the uncapacitated BEP, in which $$u_j$$ u j is infinity for each j, we give a 4.2-approximation algorithm.

Suggested Citation

  • Lehilton L. C. Pedrosa & Rafael C. S. Schouery, 2018. "Approximation algorithms for the bus evacuation problem," Journal of Combinatorial Optimization, Springer, vol. 36(1), pages 131-141, July.
  • Handle: RePEc:spr:jcomop:v:36:y:2018:i:1:d:10.1007_s10878-018-0290-x
    DOI: 10.1007/s10878-018-0290-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-018-0290-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-018-0290-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaouthar Deghdak & Vincent T’kindt & Jean-Louis Bouquard, 2016. "Scheduling evacuation operations," Journal of Scheduling, Springer, vol. 19(4), pages 467-478, August.
    2. Goerigk, Marc & Deghdak, Kaouthar & T’Kindt, Vincent, 2015. "A two-stage robustness approach to evacuation planning with buses," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 66-82.
    3. H. W. Kuhn, 1955. "The Hungarian method for the assignment problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 2(1‐2), pages 83-97, March.
    4. Corinna Kaufmann, 2014. "Application of Scheduling Theory to the Bus Evacuation Problem," Operations Research Proceedings, in: Dennis Huisman & Ilse Louwerse & Albert P.M. Wagelmans (ed.), Operations Research Proceedings 2013, edition 127, pages 231-236, Springer.
    5. Victor C. Pereira & Douglas R. Bish, 2015. "Scheduling and Routing for a Bus-Based Evacuation with a Constant Evacuee Arrival Rate," Transportation Science, INFORMS, vol. 49(4), pages 853-867, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stenfors, Alexis & Susai, Masayuki, 2021. "Spoofing and pinging in foreign exchange markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 70(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yan & Wang, Junwei, 2019. "Integrated reconfiguration of both supply and demand for evacuation planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 82-94.
    2. Krutein, Klaas Fiete & Goodchild, Anne, 2022. "The isolated community evacuation problem with mixed integer programming," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    3. Yuanyuan Feng & Yi Cao & Shuanghua Yang & Lili Yang & Tangjian Wei, 2023. "A two-step sub-optimal algorithm for bus evacuation planning," Operational Research, Springer, vol. 23(2), pages 1-35, June.
    4. Weiqiang Shen & Chuanlin Zhang & Xiaona Zhang & Jinglun Shi, 2019. "A fully distributed deployment algorithm for underwater strong k-barrier coverage using mobile sensors," International Journal of Distributed Sensor Networks, , vol. 15(4), pages 15501477198, April.
    5. Bo Cowgill & Jonathan M. V. Davis & B. Pablo Montagnes & Patryk Perkowski, 2024. "Stable Matching on the Job? Theory and Evidence on Internal Talent Markets," CESifo Working Paper Series 11120, CESifo.
    6. András Frank, 2005. "On Kuhn's Hungarian Method—A tribute from Hungary," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(1), pages 2-5, February.
    7. Weihua Yang & Xu Zhang & Xia Wang, 2024. "The Wasserstein Metric between a Discrete Probability Measure and a Continuous One," Mathematics, MDPI, vol. 12(15), pages 1-13, July.
    8. Amit Kumar & Anila Gupta, 2013. "Mehar’s methods for fuzzy assignment problems with restrictions," Fuzzy Information and Engineering, Springer, vol. 5(1), pages 27-44, March.
    9. Nisse, Nicolas & Salch, Alexandre & Weber, Valentin, 2023. "Recovery of disrupted airline operations using k-maximum matching in graphs," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1061-1072.
    10. Parvin Ahmadi & Iman Gholampour & Mahmoud Tabandeh, 2018. "Cluster-based sparse topical coding for topic mining and document clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 537-558, September.
    11. Bachtenkirch, David & Bock, Stefan, 2022. "Finding efficient make-to-order production and batch delivery schedules," European Journal of Operational Research, Elsevier, vol. 297(1), pages 133-152.
    12. Omar Zatarain & Jesse Yoe Rumbo-Morales & Silvia Ramos-Cabral & Gerardo Ortíz-Torres & Felipe d. J. Sorcia-Vázquez & Iván Guillén-Escamilla & Juan Carlos Mixteco-Sánchez, 2023. "A Method for Perception and Assessment of Semantic Textual Similarities in English," Mathematics, MDPI, vol. 11(12), pages 1-20, June.
    13. Chenchen Ma & Jing Ouyang & Gongjun Xu, 2023. "Learning Latent and Hierarchical Structures in Cognitive Diagnosis Models," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 175-207, March.
    14. Winker, Peter, 2023. "Visualizing Topic Uncertainty in Topic Modelling," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277584, Verein für Socialpolitik / German Economic Association.
    15. Esposito Amideo, A. & Scaparra, M.P. & Kotiadis, K., 2019. "Optimising shelter location and evacuation routing operations: The critical issues," European Journal of Operational Research, Elsevier, vol. 279(2), pages 279-295.
    16. Robert M. Curry & Joseph Foraker & Gary Lazzaro & David M. Ruth, 2024. "Practice Summary: Optimal Student Group Reassignment at U.S. Naval Academy," Interfaces, INFORMS, vol. 54(3), pages 205-210, May.
    17. Aidin Rezaeian & Hamidreza Koosha & Mohammad Ranjbar & Saeed Poormoaied, 2024. "The assignment of project managers to projects in an uncertain dynamic environment," Annals of Operations Research, Springer, vol. 341(2), pages 1107-1134, October.
    18. Tran Hoang Hai, 2020. "Estimation of volatility causality in structural autoregressions with heteroskedasticity using independent component analysis," Statistical Papers, Springer, vol. 61(1), pages 1-16, February.
    19. Delafield, Gemma & Smith, Greg S. & Day, Brett & Holland, Robert A. & Donnison, Caspar & Hastings, Astley & Taylor, Gail & Owen, Nathan & Lovett, Andrew, 2024. "Spatial context matters: Assessing how future renewable energy pathways will impact nature and society," Renewable Energy, Elsevier, vol. 220(C).
    20. P. Senthil Kumar & R. Jahir Hussain, 2016. "A Simple Method for Solving Fully Intuitionistic Fuzzy Real Life Assignment Problem," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 7(2), pages 39-61, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:36:y:2018:i:1:d:10.1007_s10878-018-0290-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.