IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v33y2017i2d10.1007_s10878-016-0005-0.html
   My bibliography  Save this article

Approximation algorithm for partial positive influence problem in social network

Author

Listed:
  • Yingli Ran

    (Xinjiang University)

  • Zhao Zhang

    (Zhejiang Normal University)

  • Hongwei Du

    (Harbin Institute of Technology)

  • Yuqing Zhu

    (California State University)

Abstract

Influence problem is one of the central problems in the study of online social networks, the goal of which is to influence all nodes with the minimum number of seeds. However, in the real world, it might be too expensive to influence all nodes. In many cases, it is satisfactory to influence nodes only up to some percent p. In this paper, we study the minimum partial positive influence dominating set (MPPIDS) problem. In fact, we presented an approximation algorithm for a more general problem called minimum partial set multicover problem. As a consequence, the MPPIDS problem admits an approximation with performance ratio $$\gamma H(\Delta )$$ γ H ( Δ ) , where $$H(\cdot )$$ H ( · ) is the Harmonic number, $$\gamma =1/(1-(1-p)\eta ),\eta \approx \Delta ^2/\delta $$ γ = 1 / ( 1 - ( 1 - p ) η ) , η ≈ Δ 2 / δ , and $$\Delta ,\delta $$ Δ , δ are the maximum degree and the minimum degree of the graph, respectively. For power-law graphs, we show that our algorithm has a constant performance ratio.

Suggested Citation

  • Yingli Ran & Zhao Zhang & Hongwei Du & Yuqing Zhu, 2017. "Approximation algorithm for partial positive influence problem in social network," Journal of Combinatorial Optimization, Springer, vol. 33(2), pages 791-802, February.
  • Handle: RePEc:spr:jcomop:v:33:y:2017:i:2:d:10.1007_s10878-016-0005-0
    DOI: 10.1007/s10878-016-0005-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-016-0005-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-016-0005-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    2. Thang N. Dinh & Yilin Shen & Dung T. Nguyen & My T. Thai, 2014. "On the approximability of positive influence dominating set in social networks," Journal of Combinatorial Optimization, Springer, vol. 27(3), pages 487-503, April.
    3. FISHER, Marshall L. & WOLSEY, Laurence A., 1982. "On the greedy heuristic for continuous covering and packing problems," LIDAM Reprints CORE 505, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Gregory Dobson, 1982. "Worst-Case Analysis of Greedy Heuristics for Integer Programming with Nonnegative Data," Mathematics of Operations Research, INFORMS, vol. 7(4), pages 515-531, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Geng & Guan, Jian & Feng, Huibin, 2018. "An ILP based memetic algorithm for finding minimum positive influence dominating sets in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 199-209.
    2. Yishuo Shi & Yingli Ran & Zhao Zhang & James Willson & Guangmo Tong & Ding-Zhu Du, 2019. "Approximation algorithm for the partial set multi-cover problem," Journal of Global Optimization, Springer, vol. 75(4), pages 1133-1146, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yingli Ran & Yishuo Shi & Zhao Zhang, 2017. "Local ratio method on partial set multi-cover," Journal of Combinatorial Optimization, Springer, vol. 34(1), pages 302-313, July.
    2. Sanjeev Goyal & Fernando Vega-Redondo, 2000. "Learning, Network Formation and Coordination," Econometric Society World Congress 2000 Contributed Papers 0113, Econometric Society.
    3. Quayle, A.P. & Siddiqui, A.S. & Jones, S.J.M., 2006. "Preferential network perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 823-840.
    4. Chen, Lei & Yue, Dong & Dou, Chunxia, 2019. "Optimization on vulnerability analysis and redundancy protection in interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1216-1226.
    5. Bálint Mészáros & István Simon & Zsuzsanna Dosztányi, 2009. "Prediction of Protein Binding Regions in Disordered Proteins," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-18, May.
    6. Irina Rish & Guillermo Cecchi & Benjamin Thyreau & Bertrand Thirion & Marion Plaze & Marie Laure Paillere-Martinot & Catherine Martelli & Jean-Luc Martinot & Jean-Baptiste Poline, 2013. "Schizophrenia as a Network Disease: Disruption of Emergent Brain Function in Patients with Auditory Hallucinations," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-15, January.
    7. Wang, Zhuoyang & Chen, Guo & Hill, David J. & Dong, Zhao Yang, 2016. "A power flow based model for the analysis of vulnerability in power networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 105-115.
    8. Bellingeri, Michele & Cassi, Davide & Vincenzi, Simone, 2014. "Efficiency of attack strategies on complex model and real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 174-180.
    9. Bech, Morten L. & Atalay, Enghin, 2010. "The topology of the federal funds market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5223-5246.
    10. Valentini, Luca & Perugini, Diego & Poli, Giampiero, 2007. "The “small-world” topology of rock fracture networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 323-328.
    11. Enrico Zio & Giovanni Sansavini, 2011. "Component Criticality in Failure Cascade Processes of Network Systems," Risk Analysis, John Wiley & Sons, vol. 31(8), pages 1196-1210, August.
    12. Ryan M. Hynes & Bernardo S. Buarque & Ronald B. Davies & Dieter F. Kogler, 2020. "Hops, Skip & a Jump - The Regional Uniqueness of Beer Styles," Working Papers 202013, Geary Institute, University College Dublin.
    13. Pi, Xiaochen & Tang, Longkun & Chen, Xiangzhong, 2021. "A directed weighted scale-free network model with an adaptive evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    14. Lenore Newman & Ann Dale, 2007. "Homophily and Agency: Creating Effective Sustainable Development Networks," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 9(1), pages 79-90, February.
    15. Aybike Ulusan & Ozlem Ergun, 2018. "Restoration of services in disrupted infrastructure systems: A network science approach," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-28, February.
    16. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    17. Cicchini, Tomás & Caridi, Inés & Ermann, Leonardo, 2024. "Robustness of the public transport network against attacks on its routes," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    18. Yingli Ran & Zhao Zhang & Shaojie Tang & Ding-Zhu Du, 2021. "Breaking the r max Barrier: Enhanced Approximation Algorithms for Partial Set Multicover Problem," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 774-784, May.
    19. Deng, Ye & Wu, Jun & Tan, Yue-jin, 2016. "Optimal attack strategy of complex networks based on tabu search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 74-81.
    20. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:33:y:2017:i:2:d:10.1007_s10878-016-0005-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.