IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v31y2016i4d10.1007_s10878-015-9839-0.html
   My bibliography  Save this article

On statistical bounds of heuristic solutions to location problems

Author

Listed:
  • Kenneth Carling

    (Dalarna university)

  • Xiangli Meng

    (Dalarna university)

Abstract

Combinatorial optimization problems such as locating facilities frequently rely on heuristics to minimize the objective function. The optimum is often sought iteratively; a criterion is therefore necessary to be able to decide when the procedure attains such an optimum. Pre-setting the number of iterations is dominant in OR applications, however, the fact that the quality of the solution cannot be ascertained by pre-setting the number of iterations makes it less preferable. A small and, almost dormant, branch of the literature suggests usage of statistical principles to estimate the minimum and its bounds as a tool to decide upon the stopping criteria and also to evaluate the quality of the solution. In the current work we have examined the functioning of statistical bounds obtained from four different estimators using simulated annealing. P-median test problems taken from Beasley’s OR-library were used for the sake of testing. Our findings show that the Weibull estimator and 2nd order Jackknife estimators are preferable and the requirement of sample size to be about 10. It should be noted that reliable statistical bounds are found to depend critically on a sample of heuristic solutions of high quality; we have therefore provided a simple statistic for checking the quality. The work finally concludes with an illustration of applying statistical bounds to the problem of locating 70 post distribution centers in a region in Sweden.

Suggested Citation

  • Kenneth Carling & Xiangli Meng, 2016. "On statistical bounds of heuristic solutions to location problems," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1518-1549, May.
  • Handle: RePEc:spr:jcomop:v:31:y:2016:i:4:d:10.1007_s10878-015-9839-0
    DOI: 10.1007/s10878-015-9839-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-015-9839-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-015-9839-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David G. Dannenbring, 1977. "Procedures for Estimating Optimal Solution Values for Large Combinatorial Problems," Management Science, INFORMS, vol. 23(12), pages 1273-1283, August.
    2. Bruce L. Golden & Frank B. Alt, 1979. "Interval estimation of a global optimum for large combinatorial problems," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 26(1), pages 69-77, March.
    3. S. L. Hakimi, 1965. "Optimum Distribution of Switching Centers in a Communication Network and Some Related Graph Theoretic Problems," Operations Research, INFORMS, vol. 13(3), pages 462-475, June.
    4. Wilson, Amy D. & King, Russell E. & Wilson, James R., 2004. "Case study on statistically estimating minimum makespan for flow line scheduling problems," European Journal of Operational Research, Elsevier, vol. 155(2), pages 439-454, June.
    5. Kenneth Carling & Mengjie Han & Johan Håkansson, 2012. "Does Euclidean distance work well when the p-median model is applied in rural areas?," Annals of Operations Research, Springer, vol. 201(1), pages 83-97, December.
    6. Fernando Chiyoshi & Roberto Galvão, 2000. "A statistical analysis of simulated annealing applied to the p-median problem," Annals of Operations Research, Springer, vol. 96(1), pages 61-74, November.
    7. S. L. Hakimi, 1964. "Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph," Operations Research, INFORMS, vol. 12(3), pages 450-459, June.
    8. Beasley, J. E., 1993. "Lagrangean heuristics for location problems," European Journal of Operational Research, Elsevier, vol. 65(3), pages 383-399, March.
    9. Ulrich Derigs, 1985. "Using Confidence Limits for the Global Optimum in Combinatorial Optimization," Operations Research, INFORMS, vol. 33(5), pages 1024-1049, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schwab, Leila & Gold, Stefan & Reiner, Gerald, 2019. "Exploring financial sustainability of SMEs during periods of production growth: A simulation study," International Journal of Production Economics, Elsevier, vol. 212(C), pages 8-18.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenneth Carling & Xiangli Meng, 2015. "Confidence in heuristic solutions?," Journal of Global Optimization, Springer, vol. 63(2), pages 381-399, October.
    2. Robert L. Nydick & Howard J. Weiss, 1994. "An analytical evaluation of optimal solution value estimation procedures," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(2), pages 189-202, March.
    3. Drexl, Andreas & Klose, Andreas, 2001. "Facility location models for distribution system design," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 546, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    4. H K Smith & G Laporte & P R Harper, 2009. "Locational analysis: highlights of growth to maturity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 140-148, May.
    5. Carling, Kenneth & Han, Mengjie & Håkansson, Johan & Meng, Xiangli & Rudholm, Niklas, 2014. "Measuring CO2 Emissions Induced by Online and Brick-and-mortar Retailing," HUI Working Papers 106, HUI Research.
    6. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    7. Colmenar, J. Manuel & Greistorfer, Peter & Martí, Rafael & Duarte, Abraham, 2016. "Advanced Greedy Randomized Adaptive Search Procedure for the Obnoxious p-Median problem," European Journal of Operational Research, Elsevier, vol. 252(2), pages 432-442.
    8. Antiopi Panteli & Basilis Boutsinas & Ioannis Giannikos, 2021. "On solving the multiple p-median problem based on biclustering," Operational Research, Springer, vol. 21(1), pages 775-799, March.
    9. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    10. S Salhi & A Al-Khedhairi, 2010. "Integrating heuristic information into exact methods: The case of the vertex p-centre problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(11), pages 1619-1631, November.
    11. Daoqin Tong & Alan T. Murray, 2009. "Maximising coverage of spatial demand for service," Papers in Regional Science, Wiley Blackwell, vol. 88(1), pages 85-97, March.
    12. Michael Brusco & J Dennis Cradit & Douglas Steinley, 2021. "A comparison of 71 binary similarity coefficients: The effect of base rates," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-19, April.
    13. Wen, Meilin & Iwamura, Kakuzo, 2008. "Fuzzy facility location-allocation problem under the Hurwicz criterion," European Journal of Operational Research, Elsevier, vol. 184(2), pages 627-635, January.
    14. Zhizhu Lai & Qun Yue & Zheng Wang & Dongmei Ge & Yulong Chen & Zhihong Zhou, 2022. "The min-p robust optimization approach for facility location problem under uncertainty," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1134-1160, September.
    15. Xin Feng & Alan T. Murray, 2018. "Allocation using a heterogeneous space Voronoi diagram," Journal of Geographical Systems, Springer, vol. 20(3), pages 207-226, July.
    16. Wei Ding & Ke Qiu, 2020. "Approximating the asymmetric p-center problem in parameterized complete digraphs," Journal of Combinatorial Optimization, Springer, vol. 40(1), pages 21-35, July.
    17. Averbakh, Igor & Berman, Oded, 1996. "Locating flow-capturing units on a network with multi-counting and diminishing returns to scale," European Journal of Operational Research, Elsevier, vol. 91(3), pages 495-506, June.
    18. Nguyen Thai An & Nguyen Mau Nam & Xiaolong Qin, 2020. "Solving k-center problems involving sets based on optimization techniques," Journal of Global Optimization, Springer, vol. 76(1), pages 189-209, January.
    19. Peeters, Peter H., 1998. "Some new algorithms for location problems on networks," European Journal of Operational Research, Elsevier, vol. 104(2), pages 299-309, January.
    20. Knight, V.A. & Harper, P.R. & Smith, L., 2012. "Ambulance allocation for maximal survival with heterogeneous outcome measures," Omega, Elsevier, vol. 40(6), pages 918-926.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:31:y:2016:i:4:d:10.1007_s10878-015-9839-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.