IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i2p265-d1567562.html
   My bibliography  Save this article

A Consensus Community-Based Spider Wasp Optimization for Dynamic Community Detection

Author

Listed:
  • Lin Yu

    (School of Automation, Nanjing University of Science and Technology, Xiaolingwei Street, Nanjing 210094, China
    These authors contributed equally to this work.)

  • Xin Zhao

    (National Key Laboratory of Information Systems Engineering, Nanjing Research Institute of Electronic Engineering, Huitong Street, Nanjing 210007, China)

  • Ming Lv

    (School of Automation, Nanjing University of Science and Technology, Xiaolingwei Street, Nanjing 210094, China)

  • Jie Zhang

    (School of Automation, Nanjing University of Science and Technology, Xiaolingwei Street, Nanjing 210094, China
    These authors contributed equally to this work.)

Abstract

There are many evolving dynamic networks in the real world, and community detection in dynamic networks is crucial in many complex network analysis applications. In this paper, a consensus community-based discrete spider wasp optimization (SWO) approach is proposed for the dynamic network community detection problem. First, the coding, initialization, and updating strategies of the spider wasp optimization algorithm are discretized to adapt to the community detection problem. Second, the concept of intra-population and inter-population consensus community is proposed. Consensus community is the knowledge formed by the swarm summarizing the current state as well as the past history. By maintaining certain inter-population consensus community during the evolutionary process, the population in the current time window can evolve in a similar direction to those in the previous time step. Experimental results on many artificial and real dynamic networks show that the proposed method produces more accurate and robust results than current methods.

Suggested Citation

  • Lin Yu & Xin Zhao & Ming Lv & Jie Zhang, 2025. "A Consensus Community-Based Spider Wasp Optimization for Dynamic Community Detection," Mathematics, MDPI, vol. 13(2), pages 1-22, January.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:2:p:265-:d:1567562
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/2/265/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/2/265/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Moradi, Parham & Ahmadian, Sajad & Akhlaghian, Fardin, 2015. "An effective trust-based recommendation method using a novel graph clustering algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 462-481.
    2. Gergely Palla & Albert-László Barabási & Tamás Vicsek, 2007. "Quantifying social group evolution," Nature, Nature, vol. 446(7136), pages 664-667, April.
    3. Shen, Huawei & Cheng, Xueqi & Cai, Kai & Hu, Mao-Bin, 2009. "Detect overlapping and hierarchical community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1706-1712.
    4. Lin Yu & Xiaodan Guo & Dongdong Zhou & Jie Zhang, 2024. "A Multi-Objective Pigeon-Inspired Optimization Algorithm for Community Detection in Complex Networks," Mathematics, MDPI, vol. 12(10), pages 1-20, May.
    5. Wang, Zuxi & Wu, Yao & Li, Qingguang & Jin, Fengdong & Xiong, Wei, 2016. "Link prediction based on hyperbolic mapping with community structure for complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 609-623.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moradi, Mehdi & Parsa, Saeed, 2019. "An evolutionary method for community detection using a novel local search strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 457-475.
    2. Nedioui, Med Abdelhamid & Moussaoui, Abdelouahab & Saoud, Bilal & Babahenini, Mohamed Chaouki, 2020. "Detecting communities in social networks based on cliques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    3. Lin Yu & Xiaodan Guo & Dongdong Zhou & Jie Zhang, 2024. "A Multi-Objective Pigeon-Inspired Optimization Algorithm for Community Detection in Complex Networks," Mathematics, MDPI, vol. 12(10), pages 1-20, May.
    4. Eustace, Justine & Wang, Xingyuan & Cui, Yaozu, 2015. "Community detection using local neighborhood in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 665-677.
    5. Luca Gallo & Lucas Lacasa & Vito Latora & Federico Battiston, 2024. "Higher-order correlations reveal complex memory in temporal hypergraphs," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Cui, Yaozu & Wang, Xingyuan & Eustace, Justine, 2014. "Detecting community structure via the maximal sub-graphs and belonging degrees in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 198-207.
    7. Wu, Zhihao & Lin, Youfang & Wan, Huaiyu & Tian, Shengfeng & Hu, Keyun, 2012. "Efficient overlapping community detection in huge real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2475-2490.
    8. Lu Huang & Xiang Chen & Yi Zhang & Changtian Wang & Xiaoli Cao & Jiarun Liu, 2022. "Identification of topic evolution: network analytics with piecewise linear representation and word embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5353-5383, September.
    9. Aslan, Serpil & Kaya, Buket & Kaya, Mehmet, 2019. "Predicting potential links by using strengthened projections in evolving bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 998-1011.
    10. Stefano Guarino & Enrico Mastrostefano & Massimo Bernaschi & Alessandro Celestini & Marco Cianfriglia & Davide Torre & Lena Rebecca Zastrow, 2021. "Inferring Urban Social Networks from Publicly Available Data," Future Internet, MDPI, vol. 13(5), pages 1-45, April.
    11. Manini Madireddy & Ramasubramanian Sundararajan & Goda Doreswamy & Meisam Hejazi Nia & Amod Mital, 2017. "Constructing bundled offers for airline customers," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 16(6), pages 532-552, December.
    12. Saha, Dipa & Mitra, Sayantan & Bhowmik, Bishnu & Sensharma, Ankur, 2021. "Isotropic random geometric networks in two dimensions with a penetrable cavity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    13. Wilhelm, Thomas & Hollunder, Jens, 2007. "Information theoretic description of networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(1), pages 385-396.
    14. Zhou, Xu & Liu, Yanheng & Wang, Jian & Li, Chun, 2017. "A density based link clustering algorithm for overlapping community detection in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 65-78.
    15. Wu, Jianshe & Wang, Xiaohua & Jiao, Licheng, 2012. "Synchronization on overlapping community network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 508-514.
    16. Shang, Ronghua & Luo, Shuang & Zhang, Weitong & Stolkin, Rustam & Jiao, Licheng, 2016. "A multiobjective evolutionary algorithm to find community structures based on affinity propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 203-227.
    17. Badie, Reza & Aleahmad, Abolfazl & Asadpour, Masoud & Rahgozar, Maseud, 2013. "An efficient agent-based algorithm for overlapping community detection using nodes’ closeness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5231-5247.
    18. Zhou, HongFang & Li, Jin & Li, JunHuai & Zhang, FaCun & Cui, YingAn, 2017. "A graph clustering method for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 551-562.
    19. Fu, Xianghua & Liu, Liandong & Wang, Chao, 2013. "Detection of community overlap according to belief propagation and conflict," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 941-952.
    20. Bai, Xiwen & Ma, Zhongjun & Zhou, Yaoming, 2023. "Data-driven static and dynamic resilience assessment of the global liner shipping network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:2:p:265-:d:1567562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.