IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v28y2014i3d10.1007_s10878-013-9674-0.html
   My bibliography  Save this article

A short-term trend prediction model of topic over Sina Weibo dataset

Author

Listed:
  • Juanjuan Zhao

    (Taiyuan University of Technology)

  • Weili Wu

    (University of Texas at Dallas)

  • Xiaolong Zhang

    (Pennsylvania State University)

  • Yan Qiang

    (Taiyuan University of Technology)

  • Tao Liu

    (Taiyuan University of Technology)

  • Lidong Wu

    (University of Texas at Dallas)

Abstract

Microblog has become a popular social network service. It provides a new communication platform for information acquisition, sharing and spreading. In addition to presenting daily-life reports from users, microblog also reports unexpected events, which get broad attention. How to forecast such unexpected events as early as possible? In this paper, we propose a short-term trend prediction model of topics in Sina Weibo, the most popular microblog service in China. Based on real microblog data, we first analyze which Weibo data attributes have influence on the spreading of topics, and then build a topic spreading model. Further, we develop a model of short-term trend prediction of topics. With dataset from Weibo, we test our algorithm and analyze the experimental data which shows that the proposed model can give a short-term trend prediction of Weibo topic.

Suggested Citation

  • Juanjuan Zhao & Weili Wu & Xiaolong Zhang & Yan Qiang & Tao Liu & Lidong Wu, 2014. "A short-term trend prediction model of topic over Sina Weibo dataset," Journal of Combinatorial Optimization, Springer, vol. 28(3), pages 613-625, October.
  • Handle: RePEc:spr:jcomop:v:28:y:2014:i:3:d:10.1007_s10878-013-9674-0
    DOI: 10.1007/s10878-013-9674-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-013-9674-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-013-9674-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Si, Xia-Meng & Liu, Yun & Xiong, Fei & Zhang, Yan-Chao & Ding, Fei & Cheng, Hui, 2010. "Effects of selective attention on continuous opinions and discrete decisions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3711-3719.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zu, Xu & Diao, Xinyi & Meng, Zhiyi, 2019. "The impact of social media input intensity on firm performance: Evidence from Sina Weibo," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    2. Hengmin Zhu & Li Qian & Wang Qin & Jing Wei & Chao Shen, 2022. "Evolution analysis of online topics based on ‘word-topic’ coupling network," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 3767-3792, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diao, Su-Meng & Liu, Yun & Zeng, Qing-An & Luo, Gui-Xun & Xiong, Fei, 2014. "A novel opinion dynamics model based on expanded observation ranges and individuals’ social influences in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 220-228.
    2. Si, Xia-Meng & Wang, Wen-Dong & Ma, Yan, 2016. "Role of propagation thresholds in sentiment-based model of opinion evolution with information diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 549-559.
    3. Wang, Qiyao & Jin, Yuehui & Lin, Zhen & Cheng, Shiduan & Yang, Tan, 2016. "Influence maximization in social networks under an independent cascade-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 20-34.
    4. Si, Xia-Meng & Wang, Wen-Dong & Zhai, Chun-Qing & Ma, Yan, 2017. "A topic evolution model with sentiment and selective attention," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 480-491.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:28:y:2014:i:3:d:10.1007_s10878-013-9674-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.