IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v19y2010i3d10.1007_s10878-009-9207-z.html
   My bibliography  Save this article

Scheduling internal audit activities: a stochastic combinatorial optimization problem

Author

Listed:
  • Roberto Rossi

    (University College
    University College)

  • S. Armagan Tarim

    (Hacettepe University)

  • Brahim Hnich

    (Izmir University of Economics)

  • Steven Prestwich

    (University College)

  • Semra Karacaer

    (Hacettepe University)

Abstract

The problem of finding the optimal timing of audit activities within an organisation has been addressed by many researchers. We propose a stochastic programming formulation with Mixed Integer Linear Programming (MILP) and Constraint Programming (CP) certainty-equivalent models. In experiments neither approach dominates the other. However, the CP approach is orders of magnitude faster for large audit times, and almost as fast as the MILP approach for small audit times. This work generalises a previous approach by relaxing the assumption of instantaneous audits, and by prohibiting concurrent auditing.

Suggested Citation

  • Roberto Rossi & S. Armagan Tarim & Brahim Hnich & Steven Prestwich & Semra Karacaer, 2010. "Scheduling internal audit activities: a stochastic combinatorial optimization problem," Journal of Combinatorial Optimization, Springer, vol. 19(3), pages 325-346, April.
  • Handle: RePEc:spr:jcomop:v:19:y:2010:i:3:d:10.1007_s10878-009-9207-z
    DOI: 10.1007/s10878-009-9207-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-009-9207-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-009-9207-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brailsford, Sally C. & Potts, Chris N. & Smith, Barbara M., 1999. "Constraint satisfaction problems: Algorithms and applications," European Journal of Operational Research, Elsevier, vol. 119(3), pages 557-581, December.
    2. James H. Bookbinder & Jin-Yan Tan, 1988. "Strategies for the Probabilistic Lot-Sizing Problem with Service-Level Constraints," Management Science, INFORMS, vol. 34(9), pages 1096-1108, September.
    3. Vipul Jain & Ignacio E. Grossmann, 2001. "Algorithms for Hybrid MILP/CP Models for a Class of Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 13(4), pages 258-276, November.
    4. Tarim, S. Armagan & Smith, Barbara M., 2008. "Constraint programming for computing non-stationary (R, S) inventory policies," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1004-1021, September.
    5. A. Charnes & W. W. Cooper, 1959. "Chance-Constrained Programming," Management Science, INFORMS, vol. 6(1), pages 73-79, October.
    6. Les Proll & Barbara Smith, 1998. "Integer Linear Programming and Constraint Programming Approaches to a Template Design Problem," INFORMS Journal on Computing, INFORMS, vol. 10(3), pages 265-275, August.
    7. Irvin J. Lustig & Jean-François Puget, 2001. "Program Does Not Equal Program: Constraint Programming and Its Relationship to Mathematical Programming," Interfaces, INFORMS, vol. 31(6), pages 29-53, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xiong & Ferreira, Fernando A.F. & Chang, Ching-Ter, 2022. "Multi-objective competency-based approach to project scheduling and staff assignment: Case study of an internal audit project," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tarim, S. Armagan & Smith, Barbara M., 2008. "Constraint programming for computing non-stationary (R, S) inventory policies," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1004-1021, September.
    2. Raf Jans, 2009. "Solving Lot-Sizing Problems on Parallel Identical Machines Using Symmetry-Breaking Constraints," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 123-136, February.
    3. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    4. Yannis Pavlis & Will Recker, 2009. "A Mathematical Logic Approach for the Transformation of the Linear Conditional Piecewise Functions of Dispersion-and-Store and Cell Transmission Traffic Flow Models into Linear Mixed-Integer Form," Transportation Science, INFORMS, vol. 43(1), pages 98-116, February.
    5. S. Tarim & Brahim Hnich & Steven Prestwich & Roberto Rossi, 2009. "Finding reliable solutions: event-driven probabilistic constraint programming," Annals of Operations Research, Springer, vol. 171(1), pages 77-99, October.
    6. Rossi, Roberto & Tarim, S. Armagan & Hnich, Brahim & Prestwich, Steven, 2010. "Computing the non-stationary replenishment cycle inventory policy under stochastic supplier lead-times," International Journal of Production Economics, Elsevier, vol. 127(1), pages 180-189, September.
    7. Huseyin Tunc & Onur A. Kilic & S. Armagan Tarim & Roberto Rossi, 2018. "An Extended Mixed-Integer Programming Formulation and Dynamic Cut Generation Approach for the Stochastic Lot-Sizing Problem," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 492-506, August.
    8. Roberto Rossi & S. Tarim & Brahim Hnich & Steven Prestwich, 2012. "Constraint programming for stochastic inventory systems under shortage cost," Annals of Operations Research, Springer, vol. 195(1), pages 49-71, May.
    9. Roberto Rossi & S. Armagan Tarim & Ramesh Bollapragada, 2012. "Constraint-Based Local Search for Inventory Control Under Stochastic Demand and Lead Time," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 66-80, February.
    10. Anthony Han & Elvis Li, 2014. "A constraint programming-based approach to the crew scheduling problem of the Taipei mass rapid transit system," Annals of Operations Research, Springer, vol. 223(1), pages 173-193, December.
    11. Nasr, Walid W. & Elshar, Ibrahim J., 2018. "Continuous inventory control with stochastic and non-stationary Markovian demand," European Journal of Operational Research, Elsevier, vol. 270(1), pages 198-217.
    12. Liu, Kanglin & Zhang, Zhi-Hai, 2018. "Capacitated disassembly scheduling under stochastic yield and demand," European Journal of Operational Research, Elsevier, vol. 269(1), pages 244-257.
    13. Soysal, Mehmet & Bloemhof-Ruwaard, Jacqueline M. & Haijema, Rene & van der Vorst, Jack G.A.J., 2015. "Modeling an Inventory Routing Problem for perishable products with environmental considerations and demand uncertainty," International Journal of Production Economics, Elsevier, vol. 164(C), pages 118-133.
    14. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "Sequencing mixed-model assembly lines: Survey, classification and model critique," European Journal of Operational Research, Elsevier, vol. 192(2), pages 349-373, January.
    15. Rossi, Roberto & Tarim, S. Armagan & Hnich, Brahim & Prestwich, Steven, 2011. "A state space augmentation algorithm for the replenishment cycle inventory policy," International Journal of Production Economics, Elsevier, vol. 133(1), pages 377-384, September.
    16. Alexandra M. Newman & Martin Weiss, 2013. "A Survey of Linear and Mixed-Integer Optimization Tutorials," INFORMS Transactions on Education, INFORMS, vol. 14(1), pages 26-38, September.
    17. Tarim, S. Armagan & Dogru, Mustafa K. & Özen, Ulas & Rossi, Roberto, 2011. "An efficient computational method for a stochastic dynamic lot-sizing problem under service-level constraints," European Journal of Operational Research, Elsevier, vol. 215(3), pages 563-571, December.
    18. Rossi, Roberto & Kilic, Onur A. & Tarim, S. Armagan, 2015. "Piecewise linear approximations for the static–dynamic uncertainty strategy in stochastic lot-sizing," Omega, Elsevier, vol. 50(C), pages 126-140.
    19. Enayaty-Ahangar, Forough & Rainwater, Chase E. & Sharkey, Thomas C., 2019. "A Logic-based Decomposition Approach for Multi-Period Network Interdiction Models," Omega, Elsevier, vol. 87(C), pages 71-85.
    20. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 41-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:19:y:2010:i:3:d:10.1007_s10878-009-9207-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.