IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v39y2022i2d10.1007_s00357-021-09406-4.html
   My bibliography  Save this article

Ordinal Trees and Random Forests: Score-Free Recursive Partitioning and Improved Ensembles

Author

Listed:
  • Gerhard Tutz

    (Ludwig-Maximilians-Universität München)

Abstract

Existing ordinal trees and random forests typically use scores that are assigned to the ordered categories, which implies that a higher scale level is used. Versions of ordinal trees are proposed that take the scale level seriously and avoid the assignment of artificial scores. The construction principle is based on an investigation of the binary models that are implicitly used in parametric ordinal regression. These building blocks can be fitted by trees and combined in a similar way as in parametric models. The obtained trees use the ordinal scale level only. Since binary trees and random forests are constituent elements of the proposed trees, one can exploit the wide range of binary trees that have already been developed. A further topic is the potentially poor performance of random forests, which seems to have been neglected in the literature. Ensembles that include parametric models are proposed to obtain prediction methods that tend to perform well in a wide range of settings. The performance of the methods is evaluated empirically by using several data sets.

Suggested Citation

  • Gerhard Tutz, 2022. "Ordinal Trees and Random Forests: Score-Free Recursive Partitioning and Improved Ensembles," Journal of Classification, Springer;The Classification Society, vol. 39(2), pages 241-263, July.
  • Handle: RePEc:spr:jclass:v:39:y:2022:i:2:d:10.1007_s00357-021-09406-4
    DOI: 10.1007/s00357-021-09406-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00357-021-09406-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00357-021-09406-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    2. J. A. Anderson & P. R. Philips, 1981. "Regression, Discrimination and Measurement Models for Ordered Categorical Variables," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 30(1), pages 22-31, March.
    3. Geoff Masters, 1982. "A rasch model for partial credit scoring," Psychometrika, Springer;The Psychometric Society, vol. 47(2), pages 149-174, June.
    4. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    5. Archer, Kellie J., 2010. "rpartOrdinal: An R Package for Deriving a Classification Tree for Predicting an Ordinal Response," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 34(i07).
    6. Zardad Khan & Asma Gul & Aris Perperoglou & Miftahuddin Miftahuddin & Osama Mahmoud & Werner Adler & Berthold Lausen, 2020. "Ensemble of optimal trees, random forest and random projection ensemble classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(1), pages 97-116, March.
    7. Mariangela Sciandra & Antonella Plaia & Vincenza Capursi, 2017. "Classification trees for multivariate ordinal response: an application to Student Evaluation Teaching," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(2), pages 641-655, March.
    8. Geofferey Masters & Benjamin Wright, 1984. "The essential process in a family of measurement models," Psychometrika, Springer;The Psychometric Society, vol. 49(4), pages 529-544, December.
    9. Deb, Partha & Trivedi, Pravin K, 1997. "Demand for Medical Care by the Elderly: A Finite Mixture Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(3), pages 313-336, May-June.
    10. Harrison, David Jr. & Rubinfeld, Daniel L., 1978. "Hedonic housing prices and the demand for clean air," Journal of Environmental Economics and Management, Elsevier, vol. 5(1), pages 81-102, March.
    11. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    12. Galimberti, Giuliano & Soffritti, Gabriele & Maso, Matteo Di, 2012. "Classification Trees for Ordinal Responses in R: The rpartScore Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i10).
    13. Bercedis Peterson & Frank E. Harrell, 1990. "Partial Proportional Odds Models for Ordinal Response Variables," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 39(2), pages 205-217, June.
    14. Janitza, Silke & Tutz, Gerhard & Boulesteix, Anne-Laure, 2016. "Random forest for ordinal responses: Prediction and variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 57-73.
    15. Domenico Piccolo & Rosaria Simone, 2019. "Rejoinder to the discussion of “The class of cub models: statistical foundations, inferential issues and empirical evidence”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 477-493, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rosaria Simone, 2023. "Uncertainty Diagnostics of Binomial Regression Trees for Ordered Rating Data," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 79-105, April.
    2. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    3. Moritz Berger & Gerhard Tutz, 2021. "Transition models for count data: a flexible alternative to fixed distribution models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(4), pages 1259-1283, October.
    4. David Andrich, 2010. "Sufficiency and Conditional Estimation of Person Parameters in the Polytomous Rasch Model," Psychometrika, Springer;The Psychometric Society, vol. 75(2), pages 292-308, June.
    5. Stefania Capecchi & Francesca Di Iorio & Nunzia Nappo, 2024. "A mixture model for self-assessed stress at work across EU 163," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 78(2), pages 163-174, April-Jun.
    6. Bacci, Silvia & Fabbricatore, Rosa & Iannario, Maria, 2023. "Multilevel IRT models for the analysis of satisfaction for distance learning during the Covid-19 pandemic," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    7. Maia, Mateus & Murphy, Keefe & Parnell, Andrew C., 2024. "GP-BART: A novel Bayesian additive regression trees approach using Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
    8. Garcia, Alexis Arthur B. & Rejesus, Roderick M. & Genio, Emmanuel L., 2008. "Factors Influencing Artisanal Fisherfolks' Level of Support for Fishery Regulations: An Approach Using Alternative Ordered Logit Models," 2008 Annual Meeting, February 2-6, 2008, Dallas, Texas 6791, Southern Agricultural Economics Association.
    9. Corduas, Marcella, 2022. "Gender differences in the perception of inflation," Journal of Economic Psychology, Elsevier, vol. 90(C).
    10. Angela Maria D’Uggento & Alfonso Piscitelli & Nunziata Ribecco & Germana Scepi, 2023. "Perceived climate change risk and global green activism among young people," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(4), pages 1167-1195, October.
    11. Leonardo Grilli & Carla Rampichini, 2019. "Discussion of ‘The class of CUB models: statistical foundations, inferential issues and empirical evidence’ by Domenico Piccolo and Rosaria Simone," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 459-463, September.
    12. C. Glas & N. Verhelst, 1989. "Extensions of the partial credit model," Psychometrika, Springer;The Psychometric Society, vol. 54(4), pages 635-659, September.
    13. Tong-Yu Lu & Wai-Yin Poon & Siu Cheung, 2014. "A Unified Framework for the Comparison of Treatments with Ordinal Responses," Psychometrika, Springer;The Psychometric Society, vol. 79(4), pages 605-620, October.
    14. Anatolyev, Stanislav & Baruník, Jozef, 2019. "Forecasting dynamic return distributions based on ordered binary choice," International Journal of Forecasting, Elsevier, vol. 35(3), pages 823-835.
    15. Sen-Chi Yu & Berlin Wu, 2009. "Fuzzy item response model: a new approach to generate membership function to score psychological measurement," Quality & Quantity: International Journal of Methodology, Springer, vol. 43(3), pages 381-390, May.
    16. Sungchul Park & Anirban Basu, 2018. "Alternative evaluation metrics for risk adjustment methods," Health Economics, John Wiley & Sons, Ltd., vol. 27(6), pages 984-1010, June.
    17. Buczak, Philip & Horn, Daniel & Pauly, Markus, 2024. "Old but Gold or New and Shiny? Comparing Tree Ensembles for Ordinal Prediction with a Classic Parametric Approach," OSF Preprints v7bcf, Center for Open Science.
    18. Gerhard Tutz & Moritz Berger, 2022. "Sparser Ordinal Regression Models Based on Parametric and Additive Location‐Shift Approaches," International Statistical Review, International Statistical Institute, vol. 90(2), pages 306-327, August.
    19. Adolfo Morrone & Alfonso Piscitelli & Antonio D’Ambrosio, 2019. "How Disadvantages Shape Life Satisfaction: An Alternative Methodological Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 141(1), pages 477-502, January.
    20. Sander Barendse, 2017. "Interquantile Expectation Regression," Tinbergen Institute Discussion Papers 17-034/III, Tinbergen Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:39:y:2022:i:2:d:10.1007_s00357-021-09406-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.