IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v16y2020i5p1550147720907829.html
   My bibliography  Save this article

Timely directional data delivery to multiple destinations through relay population control in vehicular ad hoc network

Author

Listed:
  • Seona Lee
  • Sang-Ho Lee
  • HyungJune Lee

Abstract

In this article, we consider a directional data forwarding problem to multiple destinations under distinct deadline constraints in vehicular ad hoc networks. We present a simple yet effective data forwarding algorithm based on only vehicle-to-vehicle communications in infrastructure-less and map-less environments. Our algorithm consists of two phases: relay selection and proliferation . We design a relay selection algorithm that encourages a shared ride for data delivery toward a certain common intermediate point from time to time for forwarding efficiency. It chooses a strong next relay candidate among nearby connected vehicles by considering their current position, velocity, and also the current progress toward the destination. In case that one of the progress lagging indicators becomes signaled, the number of vehicle relays increases under control depending on the degree of deterioration during a packet replication procedure called proliferation . Embedding two essential parts in designing a timely data forwarding scheme validates its accurate on-time data delivery performance and forwarding efficiency in network overhead based on real-world data-driven experiments.

Suggested Citation

  • Seona Lee & Sang-Ho Lee & HyungJune Lee, 2020. "Timely directional data delivery to multiple destinations through relay population control in vehicular ad hoc network," International Journal of Distributed Sensor Networks, , vol. 16(5), pages 15501477209, May.
  • Handle: RePEc:sae:intdis:v:16:y:2020:i:5:p:1550147720907829
    DOI: 10.1177/1550147720907829
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147720907829
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147720907829?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. V. Chvatal, 1979. "A Greedy Heuristic for the Set-Covering Problem," Mathematics of Operations Research, INFORMS, vol. 4(3), pages 233-235, August.
    2. Beasley, J. E. & Chu, P. C., 1996. "A genetic algorithm for the set covering problem," European Journal of Operational Research, Elsevier, vol. 94(2), pages 392-404, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yiyuan & Pan, Shiwei & Al-Shihabi, Sameh & Zhou, Junping & Yang, Nan & Yin, Minghao, 2021. "An improved configuration checking-based algorithm for the unicost set covering problem," European Journal of Operational Research, Elsevier, vol. 294(2), pages 476-491.
    2. Abdullah Alshehri & Mahmoud Owais & Jayadev Gyani & Mishal H. Aljarbou & Saleh Alsulamy, 2023. "Residual Neural Networks for Origin–Destination Trip Matrix Estimation from Traffic Sensor Information," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    3. Victor Reyes & Ignacio Araya, 2021. "A GRASP-based scheme for the set covering problem," Operational Research, Springer, vol. 21(4), pages 2391-2408, December.
    4. Owais, Mahmoud & Moussa, Ghada S. & Hussain, Khaled F., 2019. "Sensor location model for O/D estimation: Multi-criteria meta-heuristics approach," Operations Research Perspectives, Elsevier, vol. 6(C).
    5. Vazifeh, Mohammad M. & Zhang, Hongmou & Santi, Paolo & Ratti, Carlo, 2019. "Optimizing the deployment of electric vehicle charging stations using pervasive mobility data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 75-91.
    6. Zhengyu Ma & Hong Seo Ryoo, 2021. "Spherical Classification of Data, a New Rule-Based Learning Method," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 44-71, April.
    7. Lan, Guanghui & DePuy, Gail W. & Whitehouse, Gary E., 2007. "An effective and simple heuristic for the set covering problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1387-1403, February.
    8. Gao, Chao & Yao, Xin & Weise, Thomas & Li, Jinlong, 2015. "An efficient local search heuristic with row weighting for the unicost set covering problem," European Journal of Operational Research, Elsevier, vol. 246(3), pages 750-761.
    9. Maenhout, Broos & Vanhoucke, Mario, 2010. "A hybrid scatter search heuristic for personalized crew rostering in the airline industry," European Journal of Operational Research, Elsevier, vol. 206(1), pages 155-167, October.
    10. Rita Portugal & Helena Ramalhinho-Lourenço & José P. Paixao, 2006. "Driver scheduling problem modelling," Economics Working Papers 991, Department of Economics and Business, Universitat Pompeu Fabra.
    11. Helena R. Lourenço & José P. Paixão & Rita Portugal, 2001. "Multiobjective Metaheuristics for the Bus Driver Scheduling Problem," Transportation Science, INFORMS, vol. 35(3), pages 331-343, August.
    12. Davidov, Sreten & Pantoš, Miloš, 2017. "Planning of electric vehicle infrastructure based on charging reliability and quality of service," Energy, Elsevier, vol. 118(C), pages 1156-1167.
    13. Li, Gang & Jiang, Hongxun & He, Tian, 2015. "A genetic algorithm-based decomposition approach to solve an integrated equipment-workforce-service planning problem," Omega, Elsevier, vol. 50(C), pages 1-17.
    14. Mohamed Kashkoush & Hoda ElMaraghy, 2017. "An integer programming model for discovering associations between manufacturing system capabilities and product features," Journal of Intelligent Manufacturing, Springer, vol. 28(4), pages 1031-1044, April.
    15. Song, Zhe & Kusiak, Andrew, 2010. "Mining Pareto-optimal modules for delayed product differentiation," European Journal of Operational Research, Elsevier, vol. 201(1), pages 123-128, February.
    16. Masoud Yaghini & Mohammad Karimi & Mohadeseh Rahbar, 2015. "A set covering approach for multi-depot train driver scheduling," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 636-654, April.
    17. Hertz, Alain & Kobler, Daniel, 2000. "A framework for the description of evolutionary algorithms," European Journal of Operational Research, Elsevier, vol. 126(1), pages 1-12, October.
    18. Zhuang, Yanling & Zhou, Yun & Yuan, Yufei & Hu, Xiangpei & Hassini, Elkafi, 2022. "Order picking optimization with rack-moving mobile robots and multiple workstations," European Journal of Operational Research, Elsevier, vol. 300(2), pages 527-544.
    19. Patrizia Beraldi & Andrzej Ruszczyński, 2002. "The Probabilistic Set-Covering Problem," Operations Research, INFORMS, vol. 50(6), pages 956-967, December.
    20. Beasley, J. E., 2004. "A population heuristic for constrained two-dimensional non-guillotine cutting," European Journal of Operational Research, Elsevier, vol. 156(3), pages 601-627, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:16:y:2020:i:5:p:1550147720907829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.