IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v38y2021i3d10.1007_s00357-021-09389-2.html
   My bibliography  Save this article

Matrix Normal Cluster-Weighted Models

Author

Listed:
  • Salvatore D. Tomarchio

    (University of Catania)

  • Paul D. McNicholas

    (McMaster University)

  • Antonio Punzo

    (University of Catania)

Abstract

Finite mixtures of regressions with fixed covariates are a commonly used model-based clustering methodology to deal with regression data. However, they assume assignment independence, i.e., the allocation of data points to the clusters is made independently of the distribution of the covariates. To take into account the latter aspect, finite mixtures of regressions with random covariates, also known as cluster-weighted models (CWMs), have been proposed in the univariate and multivariate literature. In this paper, the CWM is extended to matrix data, e.g., those data where a set of variables are simultaneously observed at different time points or locations. Specifically, the cluster-specific marginal distribution of the covariates and the cluster-specific conditional distribution of the responses given the covariates are assumed to be matrix normal. Maximum likelihood parameter estimates are derived using an expectation-conditional maximization algorithm. Parameter recovery, classification assessment, and the capability of the Bayesian information criterion to detect the underlying groups are investigated using simulated data. Finally, two real data applications concerning educational indicators and the Italian non-life insurance market are presented.

Suggested Citation

  • Salvatore D. Tomarchio & Paul D. McNicholas & Antonio Punzo, 2021. "Matrix Normal Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 556-575, October.
  • Handle: RePEc:spr:jclass:v:38:y:2021:i:3:d:10.1007_s00357-021-09389-2
    DOI: 10.1007/s00357-021-09389-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00357-021-09389-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00357-021-09389-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sanjeena Subedi & Antonio Punzo & Salvatore Ingrassia & Paul McNicholas, 2013. "Clustering and classification via cluster-weighted factor analyzers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(1), pages 5-40, March.
    2. Antonio Punzo & Paul. D. McNicholas, 2017. "Robust Clustering in Regression Analysis via the Contaminated Gaussian Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 34(2), pages 249-293, July.
    3. Salvatore Ingrassia & Antonio Punzo, 2020. "Cluster Validation for Mixtures of Regressions via the Total Sum of Squares Decomposition," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 526-547, July.
    4. Utkarsh J. Dang & Antonio Punzo & Paul D. McNicholas & Salvatore Ingrassia & Ryan P. Browne, 2017. "Multivariate Response and Parsimony for Gaussian Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 34(1), pages 4-34, April.
    5. Millo, Giovanni & Piras, Gianfranco, 2012. "splm: Spatial Panel Data Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i01).
    6. Ingrassia, Salvatore & Minotti, Simona C. & Punzo, Antonio, 2014. "Model-based clustering via linear cluster-weighted models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 159-182.
    7. Laura Anderlucci & Angela Montanari & Cinzia Viroli, 2014. "A Matrix-Variate Regression Model with Canonical States: An Application to Elderly Danish Twins," Statistica, Department of Statistics, University of Bologna, vol. 74(4), pages 367-381.
    8. Salvatore Ingrassia & Simona Minotti & Giorgio Vittadini, 2012. "Local Statistical Modeling via a Cluster-Weighted Approach with Elliptical Distributions," Journal of Classification, Springer;The Classification Society, vol. 29(3), pages 363-401, October.
    9. Giovanni Millo & Gaetano Carmeci, 2011. "Non-life insurance consumption in Italy: a sub-regional panel data analysis," Journal of Geographical Systems, Springer, vol. 13(3), pages 273-298, September.
    10. Sarkar, Shuchismita & Zhu, Xuwen & Melnykov, Volodymyr & Ingrassia, Salvatore, 2020. "On parsimonious models for modeling matrix data," Computational Statistics & Data Analysis, Elsevier, vol. 142(C).
    11. Paul D. McNicholas, 2016. "Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 331-373, October.
    12. Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini & Simona Minotti, 2015. "Erratum to: The Generalized Linear Mixed Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 32(2), pages 327-355, July.
    13. N. Gershenfeld & B. Schoner & E. Metois, 1999. "Cluster-weighted modelling for time-series analysis," Nature, Nature, vol. 397(6717), pages 329-332, January.
    14. Leisch, Friedrich, 2004. "FlexMix: A General Framework for Finite Mixture Models and Latent Class Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i08).
    15. Tomarchio, Salvatore D. & Punzo, Antonio & Bagnato, Luca, 2020. "Two new matrix-variate distributions with application in model-based clustering," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    16. Semhar Michael & Volodymyr Melnykov, 2016. "An effective strategy for initializing the EM algorithm in finite mixture models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(4), pages 563-583, December.
    17. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    18. Wayne DeSarbo & William Cron, 1988. "A maximum likelihood methodology for clusterwise linear regression," Journal of Classification, Springer;The Classification Society, vol. 5(2), pages 249-282, September.
    19. Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini & Simona Minotti, 2015. "The Generalized Linear Mixed Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 32(1), pages 85-113, April.
    20. Viroli, Cinzia, 2012. "On matrix-variate regression analysis," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 296-309.
    21. Melnykov, Volodymyr & Zhu, Xuwen, 2018. "On model-based clustering of skewed matrix data," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 181-194.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael P. B. Gallaugher & Salvatore D. Tomarchio & Paul D. McNicholas & Antonio Punzo, 2022. "Multivariate cluster weighted models using skewed distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 93-124, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salvatore Ingrassia & Antonio Punzo, 2020. "Cluster Validation for Mixtures of Regressions via the Total Sum of Squares Decomposition," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 526-547, July.
    2. Diani, Cecilia & Galimberti, Giuliano & Soffritti, Gabriele, 2022. "Multivariate cluster-weighted models based on seemingly unrelated linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    3. Michael P. B. Gallaugher & Salvatore D. Tomarchio & Paul D. McNicholas & Antonio Punzo, 2022. "Multivariate cluster weighted models using skewed distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 93-124, March.
    4. Sangkon Oh & Byungtae Seo, 2023. "Merging Components in Linear Gaussian Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 25-51, April.
    5. Utkarsh J. Dang & Antonio Punzo & Paul D. McNicholas & Salvatore Ingrassia & Ryan P. Browne, 2017. "Multivariate Response and Parsimony for Gaussian Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 34(1), pages 4-34, April.
    6. Angelo Mazza & Antonio Punzo, 2020. "Mixtures of multivariate contaminated normal regression models," Statistical Papers, Springer, vol. 61(2), pages 787-822, April.
    7. Paul D. McNicholas, 2016. "Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 331-373, October.
    8. Antonio Punzo & Paul. D. McNicholas, 2017. "Robust Clustering in Regression Analysis via the Contaminated Gaussian Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 34(2), pages 249-293, July.
    9. Gabriele Soffritti, 2021. "Estimating the Covariance Matrix of the Maximum Likelihood Estimator Under Linear Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 594-625, October.
    10. Sanjeena Subedi & Antonio Punzo & Salvatore Ingrassia & Paul McNicholas, 2015. "Cluster-weighted $$t$$ t -factor analyzers for robust model-based clustering and dimension reduction," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(4), pages 623-649, November.
    11. Yang, Yu-Chen & Lin, Tsung-I & Castro, Luis M. & Wang, Wan-Lun, 2020. "Extending finite mixtures of t linear mixed-effects models with concomitant covariates," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).
    12. Michael P. B. Gallaugher & Paul D. McNicholas, 2019. "On Fractionally-Supervised Classification: Weight Selection and Extension to the Multivariate t-Distribution," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 232-265, July.
    13. Naderi, Mehrdad & Mirfarah, Elham & Wang, Wan-Lun & Lin, Tsung-I, 2023. "Robust mixture regression modeling based on the normal mean-variance mixture distributions," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    14. Počuča, Nikola & Jevtić, Petar & McNicholas, Paul D. & Miljkovic, Tatjana, 2020. "Modeling frequency and severity of claims with the zero-inflated generalized cluster-weighted models," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 79-93.
    15. Wan-Lun Wang & Yu-Chen Yang & Tsung-I Lin, 2024. "Extending finite mixtures of nonlinear mixed-effects models with covariate-dependent mixing weights," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(2), pages 271-307, June.
    16. Morris, Katherine & Punzo, Antonio & McNicholas, Paul D. & Browne, Ryan P., 2019. "Asymmetric clusters and outliers: Mixtures of multivariate contaminated shifted asymmetric Laplace distributions," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 145-166.
    17. Xuwen Zhu & Yana Melnykov, 2022. "On Finite Mixture Modeling of Change-point Processes," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 3-22, March.
    18. Roberto Mari & Salvatore Ingrassia & Antonio Punzo, 2023. "Local and Overall Deviance R-Squared Measures for Mixtures of Generalized Linear Models," Journal of Classification, Springer;The Classification Society, vol. 40(2), pages 233-266, July.
    19. Keefe Murphy & Thomas Brendan Murphy, 2020. "Gaussian parsimonious clustering models with covariates and a noise component," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 293-325, June.
    20. Benjamin Auder & Elisabeth Gassiat & Mor Absa Loum, 2021. "Least squares moment identification of binary regression mixture models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(4), pages 561-593, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:38:y:2021:i:3:d:10.1007_s00357-021-09389-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.