Classification of Asymmetric Proximity Data
Author
Abstract
Suggested Citation
DOI: 10.1007/s00357-014-9159-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Geert Soete & Wayne DeSarbo & George Furnas & J. Carroll, 1984. "The estimation of ultrametric and path length trees from rectangular proximity data," Psychometrika, Springer;The Psychometric Society, vol. 49(3), pages 289-310, September.
- Akinobu Takeuchi & Takayuki Saito & Hiroshi Yadohisa, 2007. "Asymmetric Agglomerative Hierarchical Clustering Algorithms and Their Evaluations," Journal of Classification, Springer;The Classification Society, vol. 24(1), pages 123-143, June.
- Wayne DeSarbo & Ajay Manrai & Raymond Burke, 1990. "A nonspatial methodology for the analysis of two-way proximity data incorporating the distance-density hypothesis," Psychometrika, Springer;The Psychometric Society, vol. 55(2), pages 229-253, June.
- Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
- Thomas Eckes & Peter Orlik, 1993. "An error variance approach to two-mode hierarchical clustering," Journal of Classification, Springer;The Classification Society, vol. 10(1), pages 51-74, January.
- Wayne Desarbo, 1982. "Gennclus: New models for general nonhierarchical clustering analysis," Psychometrika, Springer;The Psychometric Society, vol. 47(4), pages 449-475, December.
- Lawrence Hubert, 1973. "Min and max hierarchical clustering using asymmetric similarity measures," Psychometrika, Springer;The Psychometric Society, vol. 38(1), pages 63-72, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Giuseppe Bove & Akinori Okada, 2018. "Methods for the analysis of asymmetric pairwise relationships," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(1), pages 5-31, March.
- Donatella Vicari, 2018. "CLUSKEXT: CLUstering model for SKew-symmetric data including EXTernal information," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(1), pages 43-64, March.
- Gunnar Carlsson & Facundo Mémoli & Alejandro Ribeiro & Santiago Segarra, 2018. "Hierarchical clustering of asymmetric networks," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(1), pages 65-105, March.
- Ioan I. Gâf-Deac & Mohammad Jaradat & Florina Bran & Raluca Florentina Crețu & Daniel Moise & Svetlana Platagea Gombos & Teodora Odett Breaz, 2022. "Similarities and Proximity Symmetries for Decisions of Complex Valuation of Mining Resources in Anthropically Affected Areas," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Giuseppe Bove & Akinori Okada, 2018. "Methods for the analysis of asymmetric pairwise relationships," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(1), pages 5-31, March.
- Rocci, Roberto & Vichi, Maurizio, 2008. "Two-mode multi-partitioning," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1984-2003, January.
- Simon Blanchard & Daniel Aloise & Wayne DeSarbo, 2012. "The Heterogeneous P-Median Problem for Categorization Based Clustering," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 741-762, October.
- Simon Blanchard & Wayne DeSarbo & A. Atalay & Nukhet Harmancioglu, 2012.
"Identifying consumer heterogeneity in unobserved categories,"
Marketing Letters, Springer, vol. 23(1), pages 177-194, March.
- Selin Atalay & Simon J. Blanchard & Wayne S. Desarbo & Nukhet Harmancioglu, 2012. "Identifying Consumer Heterogeneity in Unobserved Categories," Post-Print hal-00629005, HAL.
- van Rosmalen, J.M. & Groenen, P.J.F. & Trejos, J. & Castilli, W., 2005. "Global Optimization strategies for two-mode clustering," Econometric Institute Research Papers EI 2005-33, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Ferraro, Maria Brigida & Giordani, Paolo & Vichi, Maurizio, 2021. "A class of two-mode clustering algorithms in a fuzzy setting," Econometrics and Statistics, Elsevier, vol. 18(C), pages 63-78.
- Boris Mirkin & Phipps Arabie & Lawrence Hubert, 1995. "Additive two-mode clustering: The error-variance approach revisited," Journal of Classification, Springer;The Classification Society, vol. 12(2), pages 243-263, September.
- Wayne DeSarbo & Ajay Manrai & Raymond Burke, 1990. "A nonspatial methodology for the analysis of two-way proximity data incorporating the distance-density hypothesis," Psychometrika, Springer;The Psychometric Society, vol. 55(2), pages 229-253, June.
- Wayne DeSarbo & Michael Johnson & Ajay Manrai & Lalita Manrai & Elizabeth Edwards, 1992. "Tscale: A new multidimensional scaling procedure based on tversky's contrast model," Psychometrika, Springer;The Psychometric Society, vol. 57(1), pages 43-69, March.
- Nazila Zarghi, 2021. "Evidence-Based Social Sciences: A New Emerging Field," European Journal of Social Sciences Education and Research Articles, Revistia Research and Publishing, vol. 8, January -.
- Yunpeng Zhao & Qing Pan & Chengan Du, 2019. "Logistic regression augmented community detection for network data with application in identifying autism‐related gene pathways," Biometrics, The International Biometric Society, vol. 75(1), pages 222-234, March.
- Wu, Han-Ming & Tien, Yin-Jing & Chen, Chun-houh, 2010. "GAP: A graphical environment for matrix visualization and cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 767-778, March.
- José E. Chacón, 2021. "Explicit Agreement Extremes for a 2 × 2 Table with Given Marginals," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 257-263, July.
- F. Marta L. Di Lascio & Andrea Menapace & Roberta Pappadà, 2024. "A spatially‐weighted AMH copula‐based dissimilarity measure for clustering variables: An application to urban thermal efficiency," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
- Yifan Zhu & Chongzhi Di & Ying Qing Chen, 2019. "Clustering Functional Data with Application to Electronic Medication Adherence Monitoring in HIV Prevention Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 238-261, July.
- Irene Vrbik & Paul McNicholas, 2015. "Fractionally-Supervised Classification," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 359-381, October.
- Maurizio Vichi & Carlo Cavicchia & Patrick J. F. Groenen, 2022. "Hierarchical Means Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 553-577, November.
- Batool, Fatima & Hennig, Christian, 2021. "Clustering with the Average Silhouette Width," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
- Patrick D. Shay & Stephen S. Farnsworth Mick, 2017. "Clustered and distinct: a taxonomy of local multihospital systems," Health Care Management Science, Springer, vol. 20(3), pages 303-315, September.
- Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
More about this item
Keywords
Asymmetric dissimilarities; Partition; Skew-Symmetric matrix; Least-Squares;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:31:y:2014:i:3:p:386-420. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.