IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v31y2014i1p49-84.html
   My bibliography  Save this article

Adaptive Mixture Discriminant Analysis for Supervised Learning with Unobserved Classes

Author

Listed:
  • Charles Bouveyron

Abstract

In supervised learning, an important issue usually not taken into account by classical methods is that a class represented in the test set may have not been encountered earlier in the learning phase. Classical supervised algorithms will automatically label such observations as belonging to one of the known classes in the training set and will not be able to detect new classes. This work introduces a model-based discriminant analysis method, called adaptive mixture discriminant analysis (AMDA), which can detect several unobserved groups of points and can adapt the learned classifier to the new situation. Two EM-based procedures are proposed for parameter estimation and model selection criteria are used for selecting the actual number of classes. Experiments on artificial and real data demonstrate the ability of the proposed method to deal with complex and real-world problems. The proposed approach is also applied to the detection of unobserved communities in social network analysis. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Charles Bouveyron, 2014. "Adaptive Mixture Discriminant Analysis for Supervised Learning with Unobserved Classes," Journal of Classification, Springer;The Classification Society, vol. 31(1), pages 49-84, April.
  • Handle: RePEc:spr:jclass:v:31:y:2014:i:1:p:49-84
    DOI: 10.1007/s00357-014-9147-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00357-014-9147-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00357-014-9147-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard Bellman, 1957. "On a Dynamic Programming Approach to the Caterer Problem--I," Management Science, INFORMS, vol. 3(3), pages 270-278, April.
    2. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Fop & Pierre-Alexandre Mattei & Charles Bouveyron & Thomas Brendan Murphy, 2022. "Unobserved classes and extra variables in high-dimensional discriminant analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 55-92, March.
    2. Faicel Chamroukhi, 2016. "Piecewise Regression Mixture for Simultaneous Functional Data Clustering and Optimal Segmentation," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 374-411, October.
    3. Luca Benedetti & Eric Boniardi & Leonardo Chiani & Jacopo Ghirri & Marta Mastropietro & Andrea Cappozzo & Francesco Denti, 2024. "Variational inference for semiparametric Bayesian novelty detection in large datasets," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(3), pages 681-703, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Voelkel, Michael A. & Sachs, Anna-Lena & Thonemann, Ulrich W., 2020. "An aggregation-based approximate dynamic programming approach for the periodic review model with random yield," European Journal of Operational Research, Elsevier, vol. 281(2), pages 286-298.
    2. Tan, Madeleine Sui-Lay, 2016. "Policy coordination among the ASEAN-5: A global VAR analysis," Journal of Asian Economics, Elsevier, vol. 44(C), pages 20-40.
    3. D. W. K. Yeung, 2008. "Dynamically Consistent Solution For A Pollution Management Game In Collaborative Abatement With Uncertain Future Payoffs," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 517-538.
    4. Samrachana Adhikari & Beau Dabbs, 2018. "Social Network Analysis in R: A Software Review," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 225-253, April.
    5. Hanafi, Said & Freville, Arnaud, 1998. "An efficient tabu search approach for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 659-675, April.
    6. Renato Cordeiro Amorim, 2016. "A Survey on Feature Weighting Based K-Means Algorithms," Journal of Classification, Springer;The Classification Society, vol. 33(2), pages 210-242, July.
    7. Samrachana Adhikari & Tracy Sweet & Brian Junker, 2021. "Analysis of longitudinal advice‐seeking networks following implementation of high stakes testing," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1475-1500, October.
    8. Dmitri Blueschke & Ivan Savin, 2015. "No such thing like perfect hammer: comparing different objective function specifications for optimal control," Jena Economics Research Papers 2015-005, Friedrich-Schiller-University Jena.
    9. Jin, Jiashun & Ke, Zheng Tracy & Luo, Shengming, 2024. "Mixed membership estimation for social networks," Journal of Econometrics, Elsevier, vol. 239(2).
    10. Changming Ji & Chuangang Li & Boquan Wang & Minghao Liu & Liping Wang, 2017. "Multi-Stage Dynamic Programming Method for Short-Term Cascade Reservoirs Optimal Operation with Flow Attenuation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4571-4586, November.
    11. Ghassan, Hassan B. & Al-Jefri, Essam H., 2015. "الحساب الجاري في المدى البعيد عبر نموذج داخلي الزمن [The Current Account in the Long Run through the Intertemporal Model]," MPRA Paper 66527, University Library of Munich, Germany.
    12. John Stachurski, 2009. "Economic Dynamics: Theory and Computation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012774, April.
    13. Mercedes Esteban-Bravo & Jose M. Vidal-Sanz & Gökhan Yildirim, 2014. "Valuing Customer Portfolios with Endogenous Mass and Direct Marketing Interventions Using a Stochastic Dynamic Programming Decomposition," Marketing Science, INFORMS, vol. 33(5), pages 621-640, September.
    14. Ohno, Katsuhisa & Boh, Toshitaka & Nakade, Koichi & Tamura, Takayoshi, 2016. "New approximate dynamic programming algorithms for large-scale undiscounted Markov decision processes and their application to optimize a production and distribution system," European Journal of Operational Research, Elsevier, vol. 249(1), pages 22-31.
    15. Wentao Qu & Xianchao Xiu & Huangyue Chen & Lingchen Kong, 2023. "A Survey on High-Dimensional Subspace Clustering," Mathematics, MDPI, vol. 11(2), pages 1-39, January.
    16. Oleg Malafeyev & Achal Awasthi, 2015. "A Dynamic Model of Functioning of a Bank," Papers 1511.01529, arXiv.org.
    17. Bellemare, Charles, 2007. "A life-cycle model of outmigration and economic assimilation of immigrants in Germany," European Economic Review, Elsevier, vol. 51(3), pages 553-576, April.
    18. Daniel Adelman & George L. Nemhauser & Mario Padron & Robert Stubbs & Ram Pandit, 1999. "Allocating Fibers in Cable Manufacturing," Manufacturing & Service Operations Management, INFORMS, vol. 1(1), pages 21-35.
    19. Fosgerau, Mogens & Frejinger, Emma & Karlstrom, Anders, 2013. "A link based network route choice model with unrestricted choice set," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 70-80.
    20. Alipanah, A. & Razzaghi, M. & Dehghan, M., 2007. "Nonclassical pseudospectral method for the solution of brachistochrone problem," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1622-1628.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:31:y:2014:i:1:p:49-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.