IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v29y2024i4d10.1007_s13253-023-00590-x.html
   My bibliography  Save this article

Order Restricted Randomized Block Designs

Author

Listed:
  • Omer Ozturk

    (The Ohio State University)

  • Richard Jarrett

    (University of Adelaide, School of Agriculture, Food and Wine)

  • Olena Kravchuk

    (University of Adelaide, School of Agriculture, Food and Wine)

Abstract

Field experiments are run under two competing objectives, high precision and minimal cost. The precision can be increased either by using sound experimentation techniques that account for the sources of variation with reasonable statistical models or by increasing the sample size. Large sample sizes usually increase the cost of the experiment and may not be feasible. This paper uses order restricted randomized designs (ORRD) to increase the precision while keeping the sample size and cost of the experiment minimal. The ORRD described here starts with a randomized block design but adds a second layer of blocking by ranking plots within each block. This creates a two-way lay-out, blocks and ranking groups, and uses a restricted randomization to improve the precision of estimation of the treatment parameters. Ranking groups create a correlation structure for within-block units. The restricted randomization uses this correlation structure to reduce the error variance of the experiment. The paper computes the expected mean square for each source of variation in the ORRD design under a suitable linear model. It also provides approximate F-tests for treatment and ranking group effects. The efficiency of the ORRD is investigated through empirical power studies. Finally, an example based on a uniformity field trial illustrates the use of the method in a split-plot experiment. Supplementary material to this paper is provided online.

Suggested Citation

  • Omer Ozturk & Richard Jarrett & Olena Kravchuk, 2024. "Order Restricted Randomized Block Designs," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 831-852, December.
  • Handle: RePEc:spr:jagbes:v:29:y:2024:i:4:d:10.1007_s13253-023-00590-x
    DOI: 10.1007/s13253-023-00590-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-023-00590-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-023-00590-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juan Du & Steven N. MacEachern, 2008. "Judgement Post-Stratification for Designed Experiments," Biometrics, The International Biometric Society, vol. 64(2), pages 345-354, June.
    2. Gwowen Shieh & Show‐Li Jan, 2004. "The effectiveness of randomized complete block design," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 58(1), pages 111-124, February.
    3. Jinguo Gao & Omer Ozturk, 2017. "Rank regression in order restricted randomised designs," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 231-257, April.
    4. Lynne Stokes, 1995. "Parametric ranked set sampling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(3), pages 465-482, September.
    5. Omer Ozturk & Steven MacEachern, 2004. "Order restricted randomized designs for control versus treatment comparison," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(4), pages 701-720, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinguo Gao & Omer Ozturk, 2017. "Rank regression in order restricted randomised designs," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 231-257, April.
    2. Jesse Frey & Omer Ozturk, 2011. "Constrained estimation using judgment post-stratification," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(4), pages 769-789, August.
    3. Omer Ozturk & N. Balakrishnan, 2009. "Exact two-sample nonparametric test for quantile difference between two populations based on ranked set samples," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 235-249, March.
    4. Barabesi, Lucio & El-Sharaawi, Abdel, 2001. "The efficiency of ranked set sampling for parameter estimation," Statistics & Probability Letters, Elsevier, vol. 53(2), pages 189-199, June.
    5. Xiaoyue Zhao & Zehua Chen, 2002. "On the Ranked-Set Sampling M-Estimates for Symmetric Location Families," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(3), pages 626-640, September.
    6. Wenshu Qian & Wangxue Chen & Xiaofang He, 2021. "Parameter estimation for the Pareto distribution based on ranked set sampling," Statistical Papers, Springer, vol. 62(1), pages 395-417, February.
    7. N. Balakrishnan & M. Brito & A. Quiroz, 2013. "On the goodness-of-fit procedure for normality based on the empirical characteristic function for ranked set sampling data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(2), pages 161-177, February.
    8. Dinesh S. Bhoj, 2001. "Ranked Set Sampling with Unequal Samples," Biometrics, The International Biometric Society, vol. 57(3), pages 957-962, September.
    9. Vic Barnett & Maria Cecilia Mendes Barreto, 2001. "Estimators for a Poisson parameter using ranked set sampling," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(8), pages 929-941.
    10. Xiaofang He & Wangxue Chen & Wenshu Qian, 2020. "Maximum likelihood estimators of the parameters of the log-logistic distribution," Statistical Papers, Springer, vol. 61(5), pages 1875-1892, October.
    11. Jesse Frey & Timothy G. Feeman, 2017. "Efficiency comparisons for partially rank-ordered set sampling," Statistical Papers, Springer, vol. 58(4), pages 1149-1163, December.
    12. Raqab, Mohammad Z. & Kouider, Elies & Al-Shboul, Qasim M., 2002. "Best linear invariant estimators using ranked set sampling procedure: comparative study," Computational Statistics & Data Analysis, Elsevier, vol. 39(1), pages 97-105, March.
    13. Omer Ozturk & N. Balakrishnan, 2009. "An Exact Control-Versus-Treatment Comparison Test Based on Ranked Set Samples," Biometrics, The International Biometric Society, vol. 65(4), pages 1213-1222, December.
    14. Juan Du & Steven N. MacEachern, 2008. "Judgement Post-Stratification for Designed Experiments," Biometrics, The International Biometric Society, vol. 64(2), pages 345-354, June.
    15. Xinlei Wang & Ke Wang & Johan Lim, 2012. "Isotonized CDF Estimation from Judgment Poststratification Data with Empty Strata," Biometrics, The International Biometric Society, vol. 68(1), pages 194-202, March.
    16. Frey, Jesse & Wang, Le, 2013. "Most powerful rank tests for perfect rankings," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 157-168.
    17. Cesar Augusto Taconeli & Suely Ruiz Giolo, 2020. "Maximum likelihood estimation based on ranked set sampling designs for two extensions of the Lindley distribution with uncensored and right-censored data," Computational Statistics, Springer, vol. 35(4), pages 1827-1851, December.
    18. Jesse Frey & Timothy Feeman, 2013. "Variance estimation using judgment post-stratification," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 551-569, June.
    19. Gang Zheng & Mohammad Al-Saleh, 2003. "Improving the best linear unbiased estimator for the scale parameter of symmetric distributions by using the absolute value of ranked set samples," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(3), pages 253-265.
    20. Oualid Saci & Megdouda Ourbih-Tari & Leila Baiche, 2023. "Maximum Likelihood Estimation of Parameters of a Random Variable Using Monte Carlo Methods," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 540-571, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:29:y:2024:i:4:d:10.1007_s13253-023-00590-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.