IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v26y2021i1d10.1007_s13253-020-00420-4.html
   My bibliography  Save this article

Statistical Downscaling with Spatial Misalignment: Application to Wildland Fire $$\hbox {PM}_{2.5}$$ PM 2.5 Concentration Forecasting

Author

Listed:
  • Suman Majumder

    (North Carolina State University)

  • Yawen Guan

    (University of Nebraska–Lincoln)

  • Brian J. Reich

    (North Carolina State University)

  • Susan O’Neill

    (United States Forest Service)

  • Ana G. Rappold

    (United States Environmental protection Agency)

Abstract

Fine particulate matter, PM $$_{2.5}$$ 2.5 , has been documented to have adverse health effects, and wildland fires are a major contributor to $$\hbox {PM}_{2.5}$$ PM 2.5 air pollution in the USA. Forecasters use numerical models to predict PM $$_{2.5}$$ 2.5 concentrations to warn the public of impending health risk. Statistical methods are needed to calibrate the numerical model forecast using monitor data to reduce bias and quantify uncertainty. Typical model calibration techniques do not allow for errors due to misalignment of geographic locations. We propose a spatiotemporal downscaling methodology that uses image registration techniques to identify the spatial misalignment and accounts for and corrects the bias produced by such warping. Our model is fitted in a Bayesian framework to provide uncertainty quantification of the misalignment and other sources of error. We apply this method to different simulated data sets and show enhanced performance of the method in presence of spatial misalignment. Finally, we apply the method to a large fire in Washington state and show that the proposed method provides more realistic uncertainty quantification than standard methods.

Suggested Citation

  • Suman Majumder & Yawen Guan & Brian J. Reich & Susan O’Neill & Ana G. Rappold, 2021. "Statistical Downscaling with Spatial Misalignment: Application to Wildland Fire $$\hbox {PM}_{2.5}$$ PM 2.5 Concentration Forecasting," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(1), pages 23-44, March.
  • Handle: RePEc:spr:jagbes:v:26:y:2021:i:1:d:10.1007_s13253-020-00420-4
    DOI: 10.1007/s13253-020-00420-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-020-00420-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-020-00420-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cavan Reilly & Phillip Price & Andrew Gelman & Scott A. Sandgathe, 2004. "Using Image and Curve Registration for Measuring the Goodness of Fit of Spatial and Temporal Predictions," Biometrics, The International Biometric Society, vol. 60(4), pages 954-964, December.
    2. Brian J. Reich & Howard H. Chang & Kristen M. Foley, 2014. "A spectral method for spatial downscaling," Biometrics, The International Biometric Society, vol. 70(4), pages 932-942, December.
    3. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    4. Yawen Guan & Christian Sampson & J. Derek Tucker & Won Chang & Anirban Mondal & Murali Haran & Deborah Sulsky, 2019. "Computer Model Calibration Based on Image Warping Metrics: An Application for Sea Ice Deformation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 444-463, September.
    5. Veronica J. Berrocal & Alan E. Gelfand & David M. Holland, 2012. "Space-Time Data fusion Under Error in Computer Model Output: An Application to Modeling Air Quality," Biometrics, The International Biometric Society, vol. 68(3), pages 837-848, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. Forlani & S. Bhatt & M. Cameletti & E. Krainski & M. Blangiardo, 2020. "A joint Bayesian space–time model to integrate spatially misaligned air pollution data in R‐INLA," Environmetrics, John Wiley & Sons, Ltd., vol. 31(8), December.
    2. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    3. Nathan A. Ryder & Joshua P. Keller, 2023. "Spatiotemporal Exposure Prediction with Penalized Regression," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 260-278, June.
    4. Azar, Pablo D. & Micali, Silvio, 2018. "Computational principal agent problems," Theoretical Economics, Econometric Society, vol. 13(2), May.
    5. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    6. Tobias Fissler & Yannick Hoga, 2024. "How to Compare Copula Forecasts?," Papers 2410.04165, arXiv.org.
    7. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    8. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    9. Hwang, Eunju, 2022. "Prediction intervals of the COVID-19 cases by HAR models with growth rates and vaccination rates in top eight affected countries: Bootstrap improvement," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    10. R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.
    11. Armantier, Olivier & Treich, Nicolas, 2013. "Eliciting beliefs: Proper scoring rules, incentives, stakes and hedging," European Economic Review, Elsevier, vol. 62(C), pages 17-40.
    12. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    13. Finn Lindgren, 2015. "Comments on: Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 35-44, March.
    14. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    15. Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2023. "Forecasting with a panel Tobit model," Quantitative Economics, Econometric Society, vol. 14(1), pages 117-159, January.
    16. Warne, Anders, 2023. "DSGE model forecasting: rational expectations vs. adaptive learning," Working Paper Series 2768, European Central Bank.
    17. James Mitchell & Aubrey Poon & Dan Zhu, 2024. "Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 790-812, August.
    18. Rafael Frongillo, 2022. "Quantum Information Elicitation," Papers 2203.07469, arXiv.org.
    19. Karimi, Majid & Zaerpour, Nima, 2022. "Put your money where your forecast is: Supply chain collaborative forecasting with cost-function-based prediction markets," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1035-1049.
    20. Peysakhovich, Alexander & Plagborg-Møller, Mikkel, 2012. "A note on proper scoring rules and risk aversion," Economics Letters, Elsevier, vol. 117(1), pages 357-361.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:26:y:2021:i:1:d:10.1007_s13253-020-00420-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.