IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v24y2019i1d10.1007_s13253-018-00338-y.html
   My bibliography  Save this article

Bayesian Dynamic Linear Models for Estimation of Phenological Events from Remote Sensing Data

Author

Listed:
  • Margaret Johnson

    (North Carolina State University
    The Statistical and Applied Mathematical Sciences Institute)

  • Petruţa C. Caragea

    (Iowa State University)

  • Wendy Meiring

    (University of California, Santa Barbara)

  • C. Jeganathan

    (Birla Institute of Technology (BIT), Mesra)

  • Peter M. Atkinson

    (Lancaster University
    Queen’s University Belfast
    University of Southampton, Highfield
    Chinese Academy of Sciences)

Abstract

Estimating the timing of the occurrence of events that characterize growth cycles in vegetation from time series of remote sensing data is desirable for a wide area of applications. For example, the timings of plant life cycle events are very sensitive to weather conditions and are often used to assess the impacts of changes in weather and climate. Likewise, understanding crop phenology can have a large impact on agricultural strategies. To study phenology using remote sensing data, the timings of annual phenological events must be estimated from noisy time series that may have many missing values. Many current state-of-the-art methods consist of smoothing time series and estimating events as features of smoothed curves. A shortcoming of many of these methods is that they do not easily handle missing values and require imputation as a preprocessing step. In addition, while some currently used methods may be extendable to allow for temporal uncertainty quantification, uncertainty intervals are not usually provided with phenological event estimates. We propose methodology utilizing Bayesian dynamic linear models to estimate the timing of key phenological events from remote sensing data with uncertainty intervals. We illustrate the methodology on weekly vegetation index data from 2003 to 2007 over a region of southern India, focusing on estimating the timing of start of season and peak of greenness. Additionally, we present methods utilizing the Bayesian formulation and MCMC simulation of the model to estimate the probability that more than one growing season occurred in a given year. Supplementary materials accompanying this paper appear online.

Suggested Citation

  • Margaret Johnson & Petruţa C. Caragea & Wendy Meiring & C. Jeganathan & Peter M. Atkinson, 2019. "Bayesian Dynamic Linear Models for Estimation of Phenological Events from Remote Sensing Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(1), pages 1-25, March.
  • Handle: RePEc:spr:jagbes:v:24:y:2019:i:1:d:10.1007_s13253-018-00338-y
    DOI: 10.1007/s13253-018-00338-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-018-00338-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-018-00338-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anton Vrieling & Kirsten Beurs & Molly Brown, 2011. "Variability of African farming systems from phenological analysis of NDVI time series," Climatic Change, Springer, vol. 109(3), pages 455-477, December.
    2. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    2. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    3. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    4. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    5. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    6. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    7. Leonardo Oliveira Martins & Hirohisa Kishino, 2010. "Distribution of distances between topologies and its effect on detection of phylogenetic recombination," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 145-159, February.
    8. Tamal Ghosh & Malay Ghosh & Jerry J. Maples & Xueying Tang, 2022. "Multivariate Global-Local Priors for Small Area Estimation," Stats, MDPI, vol. 5(3), pages 1-16, July.
    9. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    10. Wu, Ji & Guo, Mengmeng & Chen, Minghua & Jeon, Bang Nam, 2019. "Market power and risk-taking of banks: Some semiparametric evidence from emerging economies," Emerging Markets Review, Elsevier, vol. 41(C).
    11. repec:jss:jstsof:21:i08 is not listed on IDEAS
    12. Deng, Yaguo, 2016. "Efficiency evaluation of Spanish hotel chains," DES - Working Papers. Statistics and Econometrics. WS 23897, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Omolola M. Adisa & Joel O. Botai & Abubeker Hassen & Daniel Darkey & Abiodun M. Adeola & Eyob Tesfamariam & Christina M. Botai & Abidemi T. Adisa, 2018. "Variability of Satellite Derived Phenological Parameters across Maize Producing Areas of South Africa," Sustainability, MDPI, vol. 10(9), pages 1-20, August.
    14. Cathy W. S. Chen & Sangyeol Lee, 2017. "Bayesian causality test for integer-valued time series models with applications to climate and crime data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 797-814, August.
    15. Makoto Chikaraishi & Akimasa Fujiwara & Junyi Zhang & Kay Axhausen, 2011. "Identifying variations and co-variations in discrete choice models," Transportation, Springer, vol. 38(6), pages 993-1016, November.
    16. Galatia Cleanthous & Emilio Porcu & Philip White, 2021. "Regularity and approximation of Gaussian random fields evolving temporally over compact two-point homogeneous spaces," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 836-860, December.
    17. Baños-Pino, José F. & Boto-García, David & Zapico, Emma, 2021. "Persistence and dynamics in the efficiency of toll motorways: The Spanish case," Efficiency Series Papers 2021/03, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    18. Xing Ju Lee & Christopher C. Drovandi & Anthony N. Pettitt, 2015. "Model choice problems using approximate Bayesian computation with applications to pathogen transmission data sets," Biometrics, The International Biometric Society, vol. 71(1), pages 198-207, March.
    19. Chaix, Basile & Jouven, Xavier & Thomas, Frédérique & Leal, Cinira & Billaudeau, Nathalie & Bean, Kathy & Kestens, Yan & Jëgo, Bertrand & Pannier, Bruno & Danchin, Nicolas, 2011. "Why socially deprived populations have a faster resting heart rate: Impact of behaviour, life course anthropometry, and biology – the RECORD Cohort Study," Social Science & Medicine, Elsevier, vol. 73(10), pages 1543-1550.
    20. Emilio Augusto Coelho-Barros & Jorge Alberto Achcar & Josmar Mazucheli, 2010. "Longitudinal Poisson modeling: an application for CD4 counting in HIV-infected patients," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(5), pages 865-880.
    21. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:24:y:2019:i:1:d:10.1007_s13253-018-00338-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.