IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/vyid10.1007_s10796-016-9653-y.html
   My bibliography  Save this article

Interactive UHF/UWB RFID tag for mass customization

Author

Listed:
  • Jue Shen

    (Royal Institute of Technology (KTH))

  • Baghaei-Nejad Majid

    (Hakim Sabzevari University)

  • Li Xie

    (Royal Institute of Technology (KTH))

  • Jia Mao

    (Royal Institute of Technology (KTH))

  • Zhibo Pang

    (ABB AB Corporate Research)

  • Yi Feng

    (Royal Institute of Technology (KTH))

  • Lida Xu

    (Old Dominion University)

  • Hannu Tenhunen

    (Royal Institute of Technology (KTH))

  • Zhuo Zou

    (Royal Institute of Technology (KTH))

  • Lirong Zheng

    (Royal Institute of Technology (KTH)
    Fudan University)

Abstract

Mass customization (MC) under the context of the Internet of Things (IoT) is expected to reform the traditional mass manufacturing. To contribute to MC from information communication and user interaction aspects, this work proposes an Ultra-High Frequency (UHF) RFID tag with an Impulse-Radio Ultra-Wide Band (IR-UWB) transmitter and an inkjet-printed Electrochromic (EC) display. First, compared to the conventional UHF RFID tags, the proposed tag shows the advantage of higher transmission data rate with still low power consumption. The response time in multi-tag accessing scenarios can be reduced to less than 500 ms per 1000 tags by the pipeline of the tag responses in IR-UWB link and the reader acknowledgments in UHF RFID link as well as by reducing the length of empty slots. Second, the tag is integrated with a flexible EC display manufactured by inkjet-printing on the polyimide substrate. It works as an automatically refreshed paper label that offers an intuitive human-to-device interface to improve the efficiency of the offline workers. To conquer the material variations and make use of the long retention time of the printed EC display, its threshold voltage is utilized and a feedback comparator enabling the display driver by the threshold voltage is designed. A System-on-Chip (SoC) is implemented in UMC 0.18 μm CMOS process. According to the experimental results: 1) the IR-UWB transmitter achieves 1.02 V pulse amplitude and 900 ps pulse duration with 18 pJ/pulse energy consumption; 2) the EC display driver automatically refreshes the display when the image fades out, and consumes 1.98 μW per 1 cm2 display size to retain an image. The UHF/UWB RFID display tag integrated on polyimide substrate is conceptually demonstrated at the end of the paper.

Suggested Citation

  • Jue Shen & Baghaei-Nejad Majid & Li Xie & Jia Mao & Zhibo Pang & Yi Feng & Lida Xu & Hannu Tenhunen & Zhuo Zou & Lirong Zheng, 0. "Interactive UHF/UWB RFID tag for mass customization," Information Systems Frontiers, Springer, vol. 0, pages 1-14.
  • Handle: RePEc:spr:infosf:v::y::i::d:10.1007_s10796-016-9653-y
    DOI: 10.1007/s10796-016-9653-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-016-9653-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-016-9653-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Salvador, Fabrizio & Forza, Cipriano & Rungtusanatham, Manus, 2002. "How to mass customize: Product architectures, sourcing configurations," Business Horizons, Elsevier, vol. 45(4), pages 61-69.
    2. Shancang Li & Li Da Xu & Shanshan Zhao, 2015. "The internet of things: a survey," Information Systems Frontiers, Springer, vol. 17(2), pages 243-259, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jue Shen & Baghaei-Nejad Majid & Li Xie & Jia Mao & Zhibo Pang & Yi Feng & Lida Xu & Hannu Tenhunen & Zhuo Zou & Lirong Zheng, 2017. "Interactive UHF/UWB RFID tag for mass customization," Information Systems Frontiers, Springer, vol. 19(5), pages 1177-1190, October.
    2. Qinghua Zheng & Chutong Yang & Haijun Yang & Jianhe Zhou, 2020. "A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things," Information Systems Frontiers, Springer, vol. 22(4), pages 829-842, August.
    3. Damminda Alahakoon & Rashmika Nawaratne & Yan Xu & Daswin Silva & Uthayasankar Sivarajah & Bhumika Gupta, 2023. "Self-Building Artificial Intelligence and Machine Learning to Empower Big Data Analytics in Smart Cities," Information Systems Frontiers, Springer, vol. 25(1), pages 221-240, February.
    4. Peter M. Bednar & Christine Welch, 0. "Socio-Technical Perspectives on Smart Working: Creating Meaningful and Sustainable Systems," Information Systems Frontiers, Springer, vol. 0, pages 1-18.
    5. Michaela Sprenger & Tobias Mettler & Robert Winter, 0. "A viability theory for digital businesses: Exploring the evolutionary changes of revenue mechanisms to support managerial decisions," Information Systems Frontiers, Springer, vol. 0, pages 1-24.
    6. Masoud Zafarzadeh & Magnus Wiktorsson & Jannicke Baalsrud Hauge, 2021. "A Systematic Review on Technologies for Data-Driven Production Logistics: Their Role from a Holistic and Value Creation Perspective," Logistics, MDPI, vol. 5(2), pages 1-32, April.
    7. Gergely Marcell Honti & Janos Abonyi, 2019. "A Review of Semantic Sensor Technologies in Internet of Things Architectures," Complexity, Hindawi, vol. 2019, pages 1-21, June.
    8. Humphrey M. Sabi & Faith-Michael E. Uzoka & Kehbuma Langmia & Felix N. Njeh & Clive K. Tsuma, 0. "A cross-country model of contextual factors impacting cloud computing adoption at universities in sub-Saharan Africa," Information Systems Frontiers, Springer, vol. 0, pages 1-24.
    9. Federica Cena & Luca Console & Assunta Matassa & Ilaria Torre, 2019. "Multi-dimensional intelligence in smart physical objects," Information Systems Frontiers, Springer, vol. 21(2), pages 383-404, April.
    10. Oscar Brousse & Charles H. Simpson & Ate Poorthuis & Clare Heaviside, 2024. "Unequal distributions of crowdsourced weather data in England and Wales," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Shang, Juan & Li, Pengfei & Li, Ling & Chen, Yong, 2018. "The relationship between population growth and capital allocation in urbanization," Technological Forecasting and Social Change, Elsevier, vol. 135(C), pages 249-256.
    12. Belfiore, Alessandra & Cuccurullo, Corrado & Aria, Massimo, 2022. "IoT in healthcare: A scientometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    13. Takano, Yasutomo & Kajikawa, Yuya, 2019. "Extracting commercialization opportunities of the Internet of Things: Measuring text similarity between papers and patents," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 45-68.
    14. Dameri, Renata Paola & Benevolo, Clara & Veglianti, Eleonora & Li, Yaya, 2019. "Understanding smart cities as a glocal strategy: A comparison between Italy and China," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 26-41.
    15. Emilia Ingemarsdotter & Ella Jamsin & Gerd Kortuem & Ruud Balkenende, 2019. "Circular Strategies Enabled by the Internet of Things—A Framework and Analysis of Current Practice," Sustainability, MDPI, vol. 11(20), pages 1-37, October.
    16. Lei, Yu & Ali, Mazhar & Khan, Imran Ali & Yinling, Wang & Mostafa, Aziz, 2024. "Presenting a model for decentralized operation based on the internet of things in a system multiple microgrids," Energy, Elsevier, vol. 293(C).
    17. Georgiana-Maria PETRESCU & Anda Larisa ȘTEF & Ioana CÎMPAN & Emil Lucian CRIȘAN & Irina Iulia SALANȚĂ, 2023. "Drivers Of Digital Transformation In Product Development, Business Modeling And Human Resources Management," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 32(1), pages 758-770, July.
    18. Paweł Dymora & Mirosław Mazurek & Krzysztof Smalara, 2021. "Modeling and Fault Tolerance Analysis of ZigBee Protocol in IoT Networks," Energies, MDPI, vol. 14(24), pages 1-21, December.
    19. Kristoffersen, Eivind & Blomsma, Fenna & Mikalef, Patrick & Li, Jingyue, 2020. "The smart circular economy: A digital-enabled circular strategies framework for manufacturing companies," Journal of Business Research, Elsevier, vol. 120(C), pages 241-261.
    20. Seker, Sukran, 2022. "IoT based sustainable smart waste management system evaluation using MCDM model under interval-valued q-rung orthopair fuzzy environment," Technology in Society, Elsevier, vol. 71(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v::y::i::d:10.1007_s10796-016-9653-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.