IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v4y2002i2d10.1023_a1016050803099.html
   My bibliography  Save this article

A Generalized Model for Predictive Data Mining

Author

Listed:
  • James V. Hansen

    (Brigham Young University)

  • James B. McDonald

    (Brigham Young University)

Abstract

This paper describes a flexible model for predictive data mining, EGB2, which optimizes over a parameter space to fit data to a family of models based on maximum-likelihood criteria. It is also shown how EGB2 can integrate asymmetric costs of Type I and Type II errors, thereby minimizing expected misclassification costs. Importantly, it has been shown that standard methods of computing maximum-likelihood estimators are generally inconsistent when applied to sample data having different proportions of labels than are found in the universe from which the sample is drawn. We show how a choice estimator based on weighting each observation's contribution to the log-likelihood function, can contribute to estimator consistency and how this feature can be implemented in EGB2.

Suggested Citation

  • James V. Hansen & James B. McDonald, 2002. "A Generalized Model for Predictive Data Mining," Information Systems Frontiers, Springer, vol. 4(2), pages 179-186, July.
  • Handle: RePEc:spr:infosf:v:4:y:2002:i:2:d:10.1023_a:1016050803099
    DOI: 10.1023/A:1016050803099
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1016050803099
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1016050803099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McDonald, James B. & Xu, Yexiao J., 1995. "A generalization of the beta distribution with applications," Journal of Econometrics, Elsevier, vol. 69(2), pages 427-428, October.
    2. Quandt, Richard E., 1983. "Computational problems and methods," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 1, chapter 12, pages 699-764, Elsevier.
    3. Clarke, Darral G. & McDonald, James B., 1992. "Generalized bankruptcy models applied to predicting consumer credit behavior," Journal of Economics and Business, Elsevier, vol. 44(1), pages 47-62, February.
    4. Manski, Charles F & Lerman, Steven R, 1977. "The Estimation of Choice Probabilities from Choice Based Samples," Econometrica, Econometric Society, vol. 45(8), pages 1977-1988, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Larsen, Bradley J. & Oswald, Florian & Reich, Gregor & Wunderli, Dan, 2012. "A test of the extreme value type I assumption in the bus engine replacement model," Economics Letters, Elsevier, vol. 116(2), pages 213-216.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Delis, Manthos & Savva, Christos & Theodossiou, Panayiotis, 2020. "A Coronavirus Asset Pricing Model: The Role of Skewness," MPRA Paper 100877, University Library of Munich, Germany.
    2. Steimetz, Seiji S.C. & Brownstone, David, 2005. "Estimating commuters' "value of time" with noisy data: a multiple imputation approach," Transportation Research Part B: Methodological, Elsevier, vol. 39(10), pages 865-889, December.
    3. Iain M. Cockburn & Megan J. MacGarvie, 2011. "Entry and Patenting in the Software Industry," Management Science, INFORMS, vol. 57(5), pages 915-933, May.
    4. Lurkin, Virginie & Garrow, Laurie A. & Higgins, Matthew J. & Newman, Jeffrey P. & Schyns, Michael, 2017. "Accounting for price endogeneity in airline itinerary choice models: An application to Continental U.S. markets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 228-246.
    5. Seiji S. C. Steimetz, 2009. "White‐Knuckle Externalities," Economic Inquiry, Western Economic Association International, vol. 47(2), pages 304-316, April.
    6. BenSaïda, Ahmed & Slim, Skander, 2016. "Highly flexible distributions to fit multiple frequency financial returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 203-213.
    7. Esmeralda Ramalho, 2004. "Covariate Measurement Error in Endogenous Stratified Samples," Economics Working Papers 2_2004, University of Évora, Department of Economics (Portugal).
    8. Richard Disney & Eleonora Fischera & Trudy Owens, 2010. "Has the Introduction of Microfinance Crowded-out Informal Loans in Malawi?," Discussion Papers 10/08, University of Nottingham, CREDIT.
    9. Chotikapanich, Duangkamon & Griffiths, William E, 2002. "Estimating Lorenz Curves Using a Dirichlet Distribution," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 290-295, April.
    10. Grosen, Anders & Lochte Jorgensen, Peter, 2000. "Fair valuation of life insurance liabilities: The impact of interest rate guarantees, surrender options, and bonus policies," Insurance: Mathematics and Economics, Elsevier, vol. 26(1), pages 37-57, February.
    11. A. B. Atkinson, 2017. "Pareto and the Upper Tail of the Income Distribution in the UK: 1799 to the Present," Economica, London School of Economics and Political Science, vol. 84(334), pages 129-156, April.
    12. Trent Geisler & Herman Ray & Ying Xie, 2023. "Finding the Proverbial Needle: Improving Minority Class Identification Under Extreme Class Imbalance," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 192-212, April.
    13. Vanesa Jorda & Jos Mar a Sarabia & Markus J ntti, 2020. "Estimation of Income Inequality from Grouped Data," LIS Working papers 804, LIS Cross-National Data Center in Luxembourg.
    14. Harvey, Andrew & Palumbo, Dario, 2023. "Score-driven models for realized volatility," Journal of Econometrics, Elsevier, vol. 237(2).
    15. Steven Berry & James Levinsohn & Ariel Pakes, 2004. "Differentiated Products Demand Systems from a Combination of Micro and Macro Data: The New Car Market," Journal of Political Economy, University of Chicago Press, vol. 112(1), pages 68-105, February.
    16. Keith Head & Yao Amber Li & Asier Minondo, 2019. "Geography, Ties, and Knowledge Flows: Evidence from Citations in Mathematics," The Review of Economics and Statistics, MIT Press, vol. 101(4), pages 713-727, October.
    17. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    18. Fabio Clementi & Mauro Gallegati & Giorgio Kaniadakis, 2010. "A model of personal income distribution with application to Italian data," Empirical Economics, Springer, vol. 39(2), pages 559-591, October.
    19. Ellina, Polina & Mascarenhas, Briance & Theodossiou, Panayiotis, 2020. "Clarifying managerial biases using a probabilistic framework," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    20. Lu Yang & Claudia Czado, 2022. "Two‐part D‐vine copula models for longitudinal insurance claim data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1534-1561, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:4:y:2002:i:2:d:10.1023_a:1016050803099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.