IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v24y2022i1d10.1007_s10796-021-10147-3.html
   My bibliography  Save this article

Enhancing Cubes with Models to Describe Multidimensional Data

Author

Listed:
  • Matteo Francia

    (University of Bologna)

  • Patrick Marcel

    (University of Tours)

  • Verónika Peralta

    (University of Tours)

  • Stefano Rizzi

    (University of Bologna)

Abstract

The Intentional Analytics Model (IAM) has been recently envisioned as a new paradigm to couple OLAP and analytics. It relies on two basic ideas: (i) letting the user explore data by expressing her analysis intentions rather than the data she needs, and (ii) returning enhanced cubes, i.e., multidimensional data annotated with knowledge insights in the form of interesting model components (e.g., clusters). In this paper we contribute to give a proof-of-concept for the IAM vision by delivering an end-to-end implementation of describe, one of the five intention operators introduced by IAM. Among the research challenges left open in IAM, those we address are (i) automatically tuning the size of models (e.g., the number of clusters), (ii) devising a measure to estimate the interestingness of model components, (iii) selecting the most effective chart or graph for visualizing each enhanced cube depending on its features, and (iv) devising a visual metaphor to display enhanced cubes and interact with them. We assess the validity of our approach in terms of user effort for formulating intentions, effectiveness, efficiency, and scalability.

Suggested Citation

  • Matteo Francia & Patrick Marcel & Verónika Peralta & Stefano Rizzi, 2022. "Enhancing Cubes with Models to Describe Multidimensional Data," Information Systems Frontiers, Springer, vol. 24(1), pages 31-48, February.
  • Handle: RePEc:spr:infosf:v:24:y:2022:i:1:d:10.1007_s10796-021-10147-3
    DOI: 10.1007/s10796-021-10147-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-021-10147-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-021-10147-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silvia Chiusano & Tania Cerquitelli & Robert Wrembel & Daniele Quercia, 2021. "Breakthroughs on Cross-Cutting Data Management, Data Analytics, and Applied Data Science," Information Systems Frontiers, Springer, vol. 23(1), pages 1-7, February.
    2. David Schuff & Karen Corral & Robert D. St. Louis & Greg Schymik, 0. "Enabling self-service BI: A methodology and a case study for a model management warehouse," Information Systems Frontiers, Springer, vol. 0, pages 1-14.
    3. Ashish Gupta & Amit Deokar & Lakshmi Iyer & Ramesh Sharda & Dave Schrader, 2018. "Big Data & Analytics for Societal Impact: Recent Research and Trends," Information Systems Frontiers, Springer, vol. 20(2), pages 185-194, April.
    4. David Schuff & Karen Corral & Robert D. St. Louis & Greg Schymik, 2018. "Enabling self-service BI: A methodology and a case study for a model management warehouse," Information Systems Frontiers, Springer, vol. 20(2), pages 275-288, April.
    5. Luvai Motiwalla & Amit V. Deokar & Surendra Sarnikar & Angelika Dimoka, 2019. "Leveraging Data Analytics for Behavioral Research," Information Systems Frontiers, Springer, vol. 21(4), pages 735-742, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jérôme Darmont & Boris Novikov & Robert Wrembel & Ladjel Bellatreche, 2022. "Advances on Data Management and Information Systems," Information Systems Frontiers, Springer, vol. 24(1), pages 1-10, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maciej Grzenda & Jaroslaw Legierski, 2021. "Towards Increased Understanding of Open Data Use for Software Development," Information Systems Frontiers, Springer, vol. 23(2), pages 495-513, April.
    2. Ashish Gupta & Amit Deokar & Lakshmi Iyer & Ramesh Sharda & Dave Schrader, 2018. "Big Data & Analytics for Societal Impact: Recent Research and Trends," Information Systems Frontiers, Springer, vol. 20(2), pages 185-194, April.
    3. Anastasia Griva & Cleopatra Bardaki & Katerina Pramatari & Georgios Doukidis, 2022. "Factors Affecting Customer Analytics: Evidence from Three Retail Cases," Information Systems Frontiers, Springer, vol. 24(2), pages 493-516, April.
    4. Benjamin Clapham & Michael Siering & Peter Gomber, 2021. "Popular News Are Relevant News! How Investor Attention Affects Algorithmic Decision-Making and Decision Support in Financial Markets," Information Systems Frontiers, Springer, vol. 23(2), pages 477-494, April.
    5. Ray Qing Cao & Dara G. Schniederjans & Vicky Ching Gu, 2021. "Stakeholder sentiment in service supply chains: big data meets agenda-setting theory," Service Business, Springer;Pan-Pacific Business Association, vol. 15(1), pages 151-175, March.
    6. Qinghua Zheng & Chutong Yang & Haijun Yang & Jianhe Zhou, 2020. "A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things," Information Systems Frontiers, Springer, vol. 22(4), pages 829-842, August.
    7. Christian Kauten & Ashish Gupta & Xiao Qin & Glenn Richey, 2022. "Predicting Blood Donors Using Machine Learning Techniques," Information Systems Frontiers, Springer, vol. 24(5), pages 1547-1562, October.
    8. Vinay Singh & Brijesh Nanavati & Arpan Kumar Kar & Agam Gupta, 2023. "How to Maximize Clicks for Display Advertisement in Digital Marketing? A Reinforcement Learning Approach," Information Systems Frontiers, Springer, vol. 25(4), pages 1621-1638, August.
    9. Mengyue Wang & Xin Li & Patrick Y. K. Chau, 2021. "Leveraging Image-Processing Techniques for Empirical Research: Feasibility and Reliability in Online Shopping Context," Information Systems Frontiers, Springer, vol. 23(3), pages 607-626, June.
    10. Kiljae Lee & Kyung Young Lee & Lorn Sheehan, 2020. "Hey Alexa! A Magic Spell of Social Glue?: Sharing a Smart Voice Assistant Speaker and Its Impact on Users’ Perception of Group Harmony," Information Systems Frontiers, Springer, vol. 22(3), pages 563-583, June.
    11. Rajat Kumar Behera & Pradip Kumar Bala & Nripendra P. Rana & Hatice Kizgin, 2022. "A Techno-Business Platform to Improve Customer Experience Following the Brand Crisis Recovery: A B2B Perspective," Information Systems Frontiers, Springer, vol. 24(6), pages 2027-2051, December.
    12. Matti Mäntymäki & Sami Hyrynsalmi & Antti Koskenvoima, 2020. "How Do Small and Medium-Sized Game Companies Use Analytics? An Attention-Based View of Game Analytics," Information Systems Frontiers, Springer, vol. 22(5), pages 1163-1178, October.
    13. Luvai Motiwalla & Amit V. Deokar & Surendra Sarnikar & Angelika Dimoka, 2019. "Leveraging Data Analytics for Behavioral Research," Information Systems Frontiers, Springer, vol. 21(4), pages 735-742, August.
    14. Michael Weber & Martin Engert & Norman Schaffer & Jörg Weking & Helmut Krcmar, 2023. "Organizational Capabilities for AI Implementation—Coping with Inscrutability and Data Dependency in AI," Information Systems Frontiers, Springer, vol. 25(4), pages 1549-1569, August.
    15. Amirhosein Bodaghi & Jonathan J. H. Zhu, 2024. "A big data analysis of the adoption of quoting encouragement policy on Twitter during the 2020 U.S. presidential election," Journal of Computational Social Science, Springer, vol. 7(2), pages 1861-1893, October.
    16. Eleanna Kafeza & Christos Makris & Gerasimos Rompolas & Feras Al-Obeidat, 2021. "Behavioral and Migration Analysis of the Dynamic Customer Relationships on Twitter," Information Systems Frontiers, Springer, vol. 23(5), pages 1303-1316, September.
    17. Ajaya K. Swain & Valeria R. Garza, 2023. "Key Factors in Achieving Service Level Agreements (SLA) for Information Technology (IT) Incident Resolution," Information Systems Frontiers, Springer, vol. 25(2), pages 819-834, April.
    18. Kristoffersen, Eivind & Mikalef, Patrick & Blomsma, Fenna & Li, Jingyue, 2021. "The effects of business analytics capability on circular economy implementation, resource orchestration capability, and firm performance," International Journal of Production Economics, Elsevier, vol. 239(C).
    19. Ghassan Beydoun & Babak Abedin & José M. Merigó & Melanie Vera, 2019. "Twenty Years of Information Systems Frontiers," Information Systems Frontiers, Springer, vol. 21(2), pages 485-494, April.
    20. Navid Aghakhani & Onook Oh & Dawn G. Gregg & Jahangir Karimi, 2021. "Online Review Consistency Matters: An Elaboration Likelihood Model Perspective," Information Systems Frontiers, Springer, vol. 23(5), pages 1287-1301, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:24:y:2022:i:1:d:10.1007_s10796-021-10147-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.