IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v21y2019i2d10.1007_s10796-017-9763-1.html
   My bibliography  Save this article

Enhancing mobile data services performance via online reviews

Author

Listed:
  • Hua (Jonathan) Ye

    (The University of Auckland)

  • Cecil Eng Huang Chua

    (The University of Auckland)

  • Jun Sun

    (Facebook Inc.)

Abstract

The prevalence of portable computational devices like smartphones and tablets has increased the popularity and importance of mobile data services (MDS). However, the flood of new MDS in the market has caused hyper-competition among MDS providers and only a few of them profit. Past studies suggest that online reviews can help MDS providers gain market attention and provide information for improving MDS applications. As a result, MDS providers can leverage reviews to innovate and profit. However, little research has empirically investigated the influences of online reviews on MDS innovation and profitability. This paper studies MDS profitability (popularity) from two angles. We posit that one strategic advantage of certain MDS providers is their ability to rapidly innovate and that innovation inspiration can be derived from reviews ubiquitous in MDS download sites. Our results show that online reviews positively impact MDS popularity directly and indirectly via increasing MDS innovation.

Suggested Citation

  • Hua (Jonathan) Ye & Cecil Eng Huang Chua & Jun Sun, 2019. "Enhancing mobile data services performance via online reviews," Information Systems Frontiers, Springer, vol. 21(2), pages 441-452, April.
  • Handle: RePEc:spr:infosf:v:21:y:2019:i:2:d:10.1007_s10796-017-9763-1
    DOI: 10.1007/s10796-017-9763-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-017-9763-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-017-9763-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Se-Joon Hong & Kar Yan Tam, 2006. "Understanding the Adoption of Multipurpose Information Appliances: The Case of Mobile Data Services," Information Systems Research, INFORMS, vol. 17(2), pages 162-179, June.
    2. Tuomo Eloranta, 2016. "Online Review Site Data in Service Innovation," International Journal of E-Services and Mobile Applications (IJESMA), IGI Global, vol. 8(4), pages 20-34, October.
    3. Sinan Aral & Chrysanthos Dellarocas & David Godes, 2013. "Introduction to the Special Issue ---Social Media and Business Transformation: A Framework for Research," Information Systems Research, INFORMS, vol. 24(1), pages 3-13, March.
    4. Michael Spence, 2002. "Signaling in Retrospect and the Informational Structure of Markets," American Economic Review, American Economic Association, vol. 92(3), pages 434-459, June.
    5. David Godes & Dina Mayzlin, 2004. "Using Online Conversations to Study Word-of-Mouth Communication," Marketing Science, INFORMS, vol. 23(4), pages 545-560, June.
    6. Xiangbin Yan & Jing Wang & Michael Chau, 2015. "Customer revisit intention to restaurants: Evidence from online reviews," Information Systems Frontiers, Springer, vol. 17(3), pages 645-657, June.
    7. Miri Kim & Jaeki Song & Jason Triche, 2015. "Toward an integrated framework for innovation in service: A resource-based view and dynamic capabilities approach," Information Systems Frontiers, Springer, vol. 17(3), pages 533-546, June.
    8. Se-Joon Hong & James Y. L. Thong & Jae-Yun Moon & Kar-Yan Tam, 2008. "Understanding the behavior of mobile data services consumers," Information Systems Frontiers, Springer, vol. 10(4), pages 431-445, September.
    9. Xinxin Li & Lorin M. Hitt, 2008. "Self-Selection and Information Role of Online Product Reviews," Information Systems Research, INFORMS, vol. 19(4), pages 456-474, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashish Kumar Jha & Indranil Bose, 2021. "Linking Drivers and Outcomes of Innovation in IT Firms: The Role of Partnerships," Information Systems Frontiers, Springer, vol. 23(6), pages 1593-1607, December.
    2. Franco Arolfo & Kevin Cortés Rodriguez & Alejandro Vaisman, 2022. "Analyzing the Quality of Twitter Data Streams," Information Systems Frontiers, Springer, vol. 24(1), pages 349-369, February.
    3. Mohammadreza Mousavizadeh & Mehrdad Koohikamali & Mohammad Salehan & Dam J. Kim, 2022. "An Investigation of Peripheral and Central Cues of Online Customer Review Voting and Helpfulness through the Lens of Elaboration Likelihood Model," Information Systems Frontiers, Springer, vol. 24(1), pages 211-231, February.
    4. Taher Ahmed Ghaleb & Daniel Alencar da Costa & Ying Zou, 2022. "On the Popularity of Internet of Things Projects in Online Communities," Information Systems Frontiers, Springer, vol. 24(5), pages 1601-1634, October.
    5. Qingfeng Zeng & Wei Zhuang & Qian Guo & Weiguo Fan, 2022. "What factors influence grassroots knowledge supplier performance in online knowledge platforms? Evidence from a paid Q&A service," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 2507-2523, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei-Lun Chang & Yi-Pei Chen, 2019. "Way too sentimental? a credible model for online reviews," Information Systems Frontiers, Springer, vol. 21(2), pages 453-468, April.
    2. Fan, Liu & Zhang, Xiaoping & Rai, Laxmisha, 2021. "When should star power and eWOM be responsible for the box office performance? - An empirical study based on signaling theory," Journal of Retailing and Consumer Services, Elsevier, vol. 62(C).
    3. Jorge Mejia & Shawn Mankad & Anandasivam Gopal, 2019. "A for Effort? Using the Crowd to Identify Moral Hazard in New York City Restaurant Hygiene Inspections," Information Systems Research, INFORMS, vol. 30(4), pages 1363-1386, December.
    4. Diwanji, Vaibhav S. & Cortese, Juliann, 2020. "Contrasting user generated videos versus brand generated videos in ecommerce," Journal of Retailing and Consumer Services, Elsevier, vol. 54(C).
    5. Sungsik Park & Woochoel Shin & Jinhong Xie, 2021. "The Fateful First Consumer Review," Marketing Science, INFORMS, vol. 40(3), pages 481-507, May.
    6. Rohit Aggarwal & Ram Gopal & Alok Gupta & Harpreet Singh, 2012. "Putting Money Where the Mouths Are: The Relation Between Venture Financing and Electronic Word-of-Mouth," Information Systems Research, INFORMS, vol. 23(3-part-2), pages 976-992, September.
    7. Antioco, Michael & Coussement, Kristof, 2018. "Misreading of consumer dissatisfaction in online product reviews: Writing style as a cause for bias," International Journal of Information Management, Elsevier, vol. 38(1), pages 301-310.
    8. Ajaya Kumar Swain & Ray Qing Cao, 2019. "Using sentiment analysis to improve supply chain intelligence," Information Systems Frontiers, Springer, vol. 21(2), pages 469-484, April.
    9. Mengyue Wang & Xin Li & Patrick Y. K. Chau, 2021. "Leveraging Image-Processing Techniques for Empirical Research: Feasibility and Reliability in Online Shopping Context," Information Systems Frontiers, Springer, vol. 23(3), pages 607-626, June.
    10. Wang, Fang & Menon, Kalyani & Ranaweera, Chatura, 2018. "Dynamic trends in online product ratings: A diagnostic utility explanation," Journal of Business Research, Elsevier, vol. 87(C), pages 80-89.
    11. Yuchi Zhang & David Godes, 2018. "Learning from Online Social Ties," Marketing Science, INFORMS, vol. 37(3), pages 425-444, May.
    12. Sulin Ba & Yuan Jin & Xinxin Li & Xianghua Lu, 2020. "One Size Fits All? The Differential Impact of Online Reviews and Coupons," Production and Operations Management, Production and Operations Management Society, vol. 29(10), pages 2403-2424, October.
    13. Lorenz Graf-Vlachy & Katharina Buhtz & Andreas König, 2018. "Social influence in technology adoption: taking stock and moving forward," Management Review Quarterly, Springer, vol. 68(1), pages 37-76, February.
    14. Liye Ma & Baohong Sun & Sunder Kekre, 2015. "The Squeaky Wheel Gets the Grease—An Empirical Analysis of Customer Voice and Firm Intervention on Twitter," Marketing Science, INFORMS, vol. 34(5), pages 627-645, September.
    15. Fernandes, Semila & Venkatesh, V.G. & Panda, Rajesh & Shi, Yangyan, 2021. "Measurement of factors influencing online shopper buying decisions: A scale development and validation," Journal of Retailing and Consumer Services, Elsevier, vol. 59(C).
    16. Floyd, Kristopher & Freling, Ryan & Alhoqail, Saad & Cho, Hyun Young & Freling, Traci, 2014. "How Online Product Reviews Affect Retail Sales: A Meta-analysis," Journal of Retailing, Elsevier, vol. 90(2), pages 217-232.
    17. Semila Fernandes & V.G. Venkatesh & Rajesh Panda & Yangyan Shi, 2021. "Measurement of factors influencing online shopper buying decisions: A scale development and validation," Post-Print hal-04455597, HAL.
    18. Rahat Ullah & Wonjoon Kim & Naveen C. Amblee & Hyunjong Lee & Alice Oh, 2014. "Do Emotions Matter? Exploring The Distribution Of Emotions In Online Product Reviews," Working papers 156, Indian Institute of Management Kozhikode.
    19. Jumaan, Ibrahim A. & Hashim, Noor Hazarina & Al-Ghazali, Basheer M., 2020. "The role of cognitive absorption in predicting mobile internet users’ continuance intention: An extension of the expectation-confirmation model," Technology in Society, Elsevier, vol. 63(C).
    20. Weijia (Daisy) Dai & Ginger Jin & Jungmin Lee & Michael Luca, 2018. "Aggregation of consumer ratings: an application to Yelp.com," Quantitative Marketing and Economics (QME), Springer, vol. 16(3), pages 289-339, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:21:y:2019:i:2:d:10.1007_s10796-017-9763-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.