IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v16y2014i1d10.1007_s10796-013-9455-4.html
   My bibliography  Save this article

Multi-user web service selection based on multi-QoS prediction

Author

Listed:
  • Shangguang Wang

    (Beijing University of Posts and Telecommunications)

  • Ching-Hsien Hsu

    (Chung Hua University)

  • Zhongjun Liang

    (Beijing University of Posts and Telecommunications)

  • Qibo Sun

    (Beijing University of Posts and Telecommunications)

  • Fangchun Yang

    (Beijing University of Posts and Telecommunications)

Abstract

In order to find best services to meet multi-user’s QoS requirements, some multi-user Web service selection schemes were proposed. However, the unavoidable challenges in these schemes are the efficiency and effect. Most existing schemes are proposed for the single request condition without considering the overload of Web services, which cannot be directly used in this problem. Furthermore, existing methods assumed the QoS information for users are all known and accurate, and in real case, there are always many missing QoS values in history records, which increase the difficulty of the selection. In this paper, we propose a new framework for multi-user Web service selection problem. This framework first predicts the missing multi-QoS values according to the historical QoS experience from users, and then selects the global optimal solution for multi-user by our fast match approach. Comprehensive empirical studies demonstrate the utility of the proposed method.

Suggested Citation

  • Shangguang Wang & Ching-Hsien Hsu & Zhongjun Liang & Qibo Sun & Fangchun Yang, 2014. "Multi-user web service selection based on multi-QoS prediction," Information Systems Frontiers, Springer, vol. 16(1), pages 143-152, March.
  • Handle: RePEc:spr:infosf:v:16:y:2014:i:1:d:10.1007_s10796-013-9455-4
    DOI: 10.1007/s10796-013-9455-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-013-9455-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-013-9455-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Bortlik & Bernd Heinrich & Michael Mayer, 2018. "Multi User Context-Aware Service Selection for Mobile Environments," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 60(5), pages 415-430, October.
    2. Junwen Lu & Guanfeng Liu & Keshou Wu & Wenjiang Qin, 2019. "Location-Aware Web Service Composition Based on the Mixture Rank of Web Services and Web Service Requests," Complexity, Hindawi, vol. 2019, pages 1-16, April.
    3. Ching-Hsien Hsu & Jianhua Ma & Mohammad S. Obaidat, 2014. "Dynamic intelligence towards merging cloud and communication services," Information Systems Frontiers, Springer, vol. 16(1), pages 1-5, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafael Teixeira & Mário Antunes & Diogo Gomes & Rui L. Aguiar, 2024. "Comparison of Semantic Similarity Models on Constrained Scenarios," Information Systems Frontiers, Springer, vol. 26(4), pages 1307-1330, August.
    2. Del Corso, Gianna M. & Romani, Francesco, 2019. "Adaptive nonnegative matrix factorization and measure comparisons for recommender systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 164-179.
    3. P Fogel & C Geissler & P Cotte & G Luta, 2022. "Applying separative non-negative matrix factorization to extra-financial data," Working Papers hal-03689774, HAL.
    4. Xiao-Bai Li & Jialun Qin, 2017. "Anonymizing and Sharing Medical Text Records," Information Systems Research, INFORMS, vol. 28(2), pages 332-352, June.
    5. Naiyang Guan & Lei Wei & Zhigang Luo & Dacheng Tao, 2013. "Limited-Memory Fast Gradient Descent Method for Graph Regularized Nonnegative Matrix Factorization," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-10, October.
    6. Spelta, A. & Pecora, N. & Rovira Kaltwasser, P., 2019. "Identifying Systemically Important Banks: A temporal approach for macroprudential policies," Journal of Policy Modeling, Elsevier, vol. 41(1), pages 197-218.
    7. M. Moghadam & K. Aminian & M. Asghari & M. Parnianpour, 2013. "How well do the muscular synergies extracted via non-negative matrix factorisation explain the variation of torque at shoulder joint?," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 16(3), pages 291-301.
    8. Markovsky, Ivan & Niranjan, Mahesan, 2010. "Approximate low-rank factorization with structured factors," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3411-3420, December.
    9. Paul Fogel & Yann Gaston-Mathé & Douglas Hawkins & Fajwel Fogel & George Luta & S. Stanley Young, 2016. "Applications of a Novel Clustering Approach Using Non-Negative Matrix Factorization to Environmental Research in Public Health," IJERPH, MDPI, vol. 13(5), pages 1-14, May.
    10. Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.
    11. Zhaoyu Xing & Yang Wan & Juan Wen & Wei Zhong, 2024. "GOLFS: feature selection via combining both global and local information for high dimensional clustering," Computational Statistics, Springer, vol. 39(5), pages 2651-2675, July.
    12. Chae, Bongsug (Kevin), 2018. "The Internet of Things (IoT): A Survey of Topics and Trends using Twitter Data and Topic Modeling," 22nd ITS Biennial Conference, Seoul 2018. Beyond the boundaries: Challenges for business, policy and society 190376, International Telecommunications Society (ITS).
    13. Jingfeng Guo & Chao Zheng & Shanshan Li & Yutong Jia & Bin Liu, 2022. "BiInfGCN: Bilateral Information Augmentation of Graph Convolutional Networks for Recommendation," Mathematics, MDPI, vol. 10(17), pages 1-16, August.
    14. Jianfei Cao & Han Yang & Jianshu Lv & Quanyuan Wu & Baolei Zhang, 2023. "Estimating Soil Salinity with Different Levels of Vegetation Cover by Using Hyperspectral and Non-Negative Matrix Factorization Algorithm," IJERPH, MDPI, vol. 20(4), pages 1-15, February.
    15. Wang, Ketong & Porter, Michael D., 2018. "Optimal Bayesian clustering using non-negative matrix factorization," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 395-411.
    16. Lei, Da & Cheng, Long & Wang, Pengfei & Chen, Xuewu & Zhang, Lin, 2024. "Identifying service bottlenecks in public bikesharing flow networks," Journal of Transport Geography, Elsevier, vol. 116(C).
    17. Semi Min & Juyong Park, 2019. "Modeling narrative structure and dynamics with networks, sentiment analysis, and topic modeling," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-20, December.
    18. Zhang, Lifeng & Chao, Xiangrui & Qian, Qian & Jing, Fuying, 2022. "Credit evaluation solutions for social groups with poor services in financial inclusion: A technical forecasting method," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    19. Yi Yu & Jaeseung Baek & Ali Tosyali & Myong K. Jeong, 2024. "Robust asymmetric non-negative matrix factorization for clustering nodes in directed networks," Annals of Operations Research, Springer, vol. 341(1), pages 245-265, October.
    20. Wentao Qu & Xianchao Xiu & Huangyue Chen & Lingchen Kong, 2023. "A Survey on High-Dimensional Subspace Clustering," Mathematics, MDPI, vol. 11(2), pages 1-39, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:16:y:2014:i:1:d:10.1007_s10796-013-9455-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.