IDEAS home Printed from https://ideas.repec.org/a/spr/indpam/v51y2020i3d10.1007_s13226-020-0450-4.html
   My bibliography  Save this article

Sufficient Conditions for Existence of Integral Solution for Non-Instantaneous Impulsive Fractional Evolution Equations

Author

Listed:
  • Jayanta Borah

    (Indian Institute of Technology Guwahati)

  • Swaroop Nandan Bora

    (Indian Institute of Technology Guwahati)

Abstract

In this article, we establish sufficient conditions for existence and uniqueness of integral solution for some non-densely defined non-instantaneous impulsive evolution equations on a Banach space involving Caputo fractional derivative. The results are obtained by means of characteristic functions based on probability density. Finally, the main results are illustrated through examples.

Suggested Citation

  • Jayanta Borah & Swaroop Nandan Bora, 2020. "Sufficient Conditions for Existence of Integral Solution for Non-Instantaneous Impulsive Fractional Evolution Equations," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(3), pages 1065-1082, September.
  • Handle: RePEc:spr:indpam:v:51:y:2020:i:3:d:10.1007_s13226-020-0450-4
    DOI: 10.1007/s13226-020-0450-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13226-020-0450-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13226-020-0450-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gautam, Ganga Ram & Dabas, Jaydev, 2015. "Mild solutions for class of neutral fractional functional differential equations with not instantaneous impulses," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 480-489.
    2. Zufeng Zhang & Bin Liu, 2012. "A Note on Impulsive Fractional Evolution Equations with Nondense Domain," Abstract and Applied Analysis, Hindawi, vol. 2012, pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mallika Arjunan, M. & Abdeljawad, Thabet & Kavitha, V. & Yousef, Ali, 2021. "On a new class of Atangana-Baleanu fractional Volterra-Fredholm integro-differential inclusions with non-instantaneous impulses," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    2. Yang, Dan & Wang, JinRong & O’Regan, D., 2018. "A class of nonlinear non-instantaneous impulsive differential equations involving parameters and fractional order," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 654-671.
    3. Haide Gou & Tianxiang Wang, 2023. "The method of lower and upper solution for Hilfer evolution equations with non-instantaneous impulses," Indian Journal of Pure and Applied Mathematics, Springer, vol. 54(2), pages 499-523, June.
    4. Balasubramaniam, P., 2021. "Controllability of semilinear noninstantaneous impulsive ABC neutral fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. Li, Mengmeng & Wang, JinRong, 2018. "Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 324(C), pages 254-265.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:indpam:v:51:y:2020:i:3:d:10.1007_s13226-020-0450-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.