IDEAS home Printed from https://ideas.repec.org/a/spr/indpam/v49y2018i4d10.1007_s13226-018-0291-6.html
   My bibliography  Save this article

Statistical Inference for the Location and Scale Parameters of the Skew Normal Distribution

Author

Listed:
  • Wenhao Gui

    (Beijing Jiaotong University)

  • Lei Guo

    (Beijing Jiaotong University)

Abstract

In this paper, we consider the problem of estimating the location and scale parameters of the skew normal distribution introduced by Azzalini. For this distribution, the classic maximum likelihood estimators(MLEs) do not take explicit forms. We approximate the likelihood equations and derive explicit estimators of the parameters. The bias and variance of the estimators are investigated and Monte Carlo simulation studies show that the estimators are as efficient as the classic MLEs. We demonstrate that the probability coverages of the pivotal quantities (for location and scale parameters) based on asymptotic normality are unsatisfactory, especially when the sample size is small. The use of unconditional simulated percentage points of these quantities is suggested. Finally, a numerical example is used to illustrate the proposed inference methods.

Suggested Citation

  • Wenhao Gui & Lei Guo, 2018. "Statistical Inference for the Location and Scale Parameters of the Skew Normal Distribution," Indian Journal of Pure and Applied Mathematics, Springer, vol. 49(4), pages 633-650, December.
  • Handle: RePEc:spr:indpam:v:49:y:2018:i:4:d:10.1007_s13226-018-0291-6
    DOI: 10.1007/s13226-018-0291-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13226-018-0291-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13226-018-0291-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    2. Wei Ning & Grace Ngunkeng, 2013. "An empirical likelihood ratio based goodness-of-fit test for skew normality," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(2), pages 209-226, June.
    3. Monica Chiogna, 1998. "Some results on the scalar Skew-normal distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 7(1), pages 1-13, April.
    4. Barry Arnold & Robert Beaver & Richard Groeneveld & William Meeker, 1993. "The nontruncated marginal of a truncated bivariate normal distribution," Psychometrika, Springer;The Psychometric Society, vol. 58(3), pages 471-488, September.
    5. Ahmed Hossain & Joseph Beyene, 2015. "Application of skew-normal distribution for detecting differential expression to microRNA data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 477-491, March.
    6. Adelchi Azzalini, 2005. "The Skew‐normal Distribution and Related Multivariate Families," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(2), pages 159-188, June.
    7. A. Asgharzadeh & L. Esmaily & S. Nadarajah, 2013. "Approximate MLEs for the location and scale parameters of the skew logistic distribution," Statistical Papers, Springer, vol. 54(2), pages 391-411, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharon Lee & Geoffrey McLachlan, 2013. "On mixtures of skew normal and skew $$t$$ -distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(3), pages 241-266, September.
    2. Hossein Negarestani & Ahad Jamalizadeh & Sobhan Shafiei & Narayanaswamy Balakrishnan, 2019. "Mean mixtures of normal distributions: properties, inference and application," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(4), pages 501-528, May.
    3. Dylan Molenaar & Conor Dolan & Paul Boeck, 2012. "The Heteroscedastic Graded Response Model with a Skewed Latent Trait: Testing Statistical and Substantive Hypotheses Related to Skewed Item Category Functions," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 455-478, July.
    4. Mehdi Amiri & Ahad Jamalizadeh & Mina Towhidi, 2015. "Inference and further probabilistic properties of the $$ SUN_{n,2}$$ S U N n , 2 -distribution," Statistical Papers, Springer, vol. 56(4), pages 1071-1098, November.
    5. Kozubowski, Tomasz J. & Nolan, John P., 2008. "Infinite divisibility of skew Gaussian and Laplace laws," Statistics & Probability Letters, Elsevier, vol. 78(6), pages 654-660, April.
    6. Cornelis J. Potgieter & Marc G. Genton, 2013. "Characteristic Function-based Semiparametric Inference for Skew-symmetric Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 471-490, September.
    7. Jamalizadeh, A. & Balakrishnan, N., 2010. "Distributions of order statistics and linear combinations of order statistics from an elliptical distribution as mixtures of unified skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1412-1427, July.
    8. David Mayston, 2015. "Analysing the effectiveness of public service producers with endogenous resourcing," Journal of Productivity Analysis, Springer, vol. 44(1), pages 115-126, August.
    9. Kampkötter, Patrick & Sliwka, Dirk, 2014. "Wage premia for newly hired employees," Labour Economics, Elsevier, vol. 31(C), pages 45-60.
    10. Adelchi Azzalini & Monica Chiogna, 2004. "Some results on the stress–strength model for skew-normal variates," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 315-326.
    11. Phil D. Young & Joshua D. Patrick & John A. Ramey & Dean M. Young, 2020. "An Alternative Matrix Skew-Normal Random Matrix and Some Properties," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(1), pages 28-49, February.
    12. Douadia Bougherara & Laurent Piet, 2018. "On the role of probability weighting on WTP for crop insurance with and without yield skewness," Working Papers hal-02790605, HAL.
    13. Arjun Gupta & Truc Nguyen & Jose Sanqui, 2004. "Characterization of the skew-normal distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(2), pages 351-360, June.
    14. Zinoviy Landsman & Udi Makov & Tomer Shushi, 2017. "Extended Generalized Skew-Elliptical Distributions and their Moments," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(1), pages 76-100, February.
    15. Ramesh Gupta & N. Balakrishnan, 2012. "Log-concavity and monotonicity of hazard and reversed hazard functions of univariate and multivariate skew-normal distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(2), pages 181-191, February.
    16. Zareifard, Hamid & Rue, Håvard & Khaledi, Majid Jafari & Lindgren, Finn, 2016. "A skew Gaussian decomposable graphical model," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 58-72.
    17. Young, Phil D. & Harvill, Jane L. & Young, Dean M., 2016. "A derivation of the multivariate singular skew-normal density function," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 40-45.
    18. Zareifard, Hamid & Jafari Khaledi, Majid, 2013. "Non-Gaussian modeling of spatial data using scale mixing of a unified skew Gaussian process," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 16-28.
    19. Loperfido, Nicola, 2002. "Statistical implications of selectively reported inferential results," Statistics & Probability Letters, Elsevier, vol. 56(1), pages 13-22, January.
    20. Jiangyan Wang & Miao Yang & Anandamayee Majumdar, 2018. "Comparative study and sensitivity analysis of skewed spatial processes," Computational Statistics, Springer, vol. 33(1), pages 75-98, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:indpam:v:49:y:2018:i:4:d:10.1007_s13226-018-0291-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.