IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v9y2018i6d10.1007_s13198-018-0747-4.html
   My bibliography  Save this article

Reliability analysis and optimization design on equilibrium elbow

Author

Listed:
  • Jie Zhou

    (Army Engineering University)

  • Yun-Xian Jia

    (Army Engineering University)

  • Jie Li

    (Anhui University)

Abstract

Equilibrium elbow is a key mechanical component in the self-propelled artillery system and the reliability analysis of the component is necessary to the safety of the whole system. In this paper, the equilibrium elbow model is established to analyze the reliability and reliability sensitivity of arbitrary distribution parameters. Three main failure modes and the times of loading action have been taken into account when analyzing the reliability sensitivity. Numerical method for reliability calculation is presented based on four moment method and the reliability sensitivity model of mean and variance values with random structural parameters were established. Based on the results of the reliability sensitivity analysis, reliability robust optimization design has been studied to enhance the reliability of equilibrium elbow and decrease the reliability sensitivity of mean and variance value. Application of the proposed approach could provide a practical routine for mechanical optimization and design.

Suggested Citation

  • Jie Zhou & Yun-Xian Jia & Jie Li, 2018. "Reliability analysis and optimization design on equilibrium elbow," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(6), pages 1326-1335, December.
  • Handle: RePEc:spr:ijsaem:v:9:y:2018:i:6:d:10.1007_s13198-018-0747-4
    DOI: 10.1007/s13198-018-0747-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-018-0747-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-018-0747-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Wenbin & Banjevic, Dragan & Pecht, Michael, 2010. "A multi-component and multi-failure mode inspection model based on the delay time concept," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 912-920.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Santosh B. Rane & Prathamesh R. Potdar & Suraj Rane, 2019. "Accelerated life testing for reliability improvement: a case study on Moulded Case Circuit Breaker (MCCB) mechanism," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(6), pages 1668-1690, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P A Scarf & H A Majid, 2011. "Modelling warranty extensions: a case study in the automotive industry," Journal of Risk and Reliability, , vol. 225(2), pages 251-265, June.
    2. Ye, Xiong-Fei & Zhang, Yi & Harutoshi, Ogai & Kim, Chul-Woo, 2019. "Hierarchical probability and risk assessment for K-out-of-N system in hierarchy," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 242-260.
    3. Hajipour, Yassin & Taghipour, Sharareh, 2016. "Non-periodic inspection optimization of multi-component and k-out-of-m systems," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 228-243.
    4. Flage, Roger, 2014. "A delay time model with imperfect and failure-inducing inspections," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 1-12.
    5. Wang, Wenbin & Syntetos, Aris A., 2011. "Spare parts demand: Linking forecasting to equipment maintenance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1194-1209.
    6. Wang, Wenbin & Zhao, Fei & Peng, Rui, 2014. "A preventive maintenance model with a two-level inspection policy based on a three-stage failure process," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 207-220.
    7. Wang, Wenbin & Banjevic, Dragan, 2012. "Ergodicity of forward times of the renewal process in a block-based inspection model using the delay time concept," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 1-7.
    8. Wang, Wenbin, 2011. "A joint spare part and maintenance inspection optimisation model using the Delay-Time concept," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1535-1541.
    9. Wang, Wenbin, 2011. "An inspection model based on a three-stage failure process," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 838-848.
    10. Wang, Wenbin, 2012. "An overview of the recent advances in delay-time-based maintenance modelling," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 165-178.
    11. Lam, Ji Ye Janet & Banjevic, Dragan, 2015. "A myopic policy for optimal inspection scheduling for condition based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 1-11.
    12. Zhu, Wenjin & Fouladirad, Mitra & Bérenguer, Christophe, 2016. "A multi-level maintenance policy for a multi-component and multifailure mode system with two independent failure modes," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 50-63.
    13. Berrade, M.D. & Scarf, P.A. & Cavalcante, C.A.V., 2018. "Conditional inspection and maintenance of a system with two interacting components," European Journal of Operational Research, Elsevier, vol. 268(2), pages 533-544.
    14. Wang, Wenbin, 2012. "A stochastic model for joint spare parts inventory and planned maintenance optimisation," European Journal of Operational Research, Elsevier, vol. 216(1), pages 127-139.
    15. Huynh, K.T. & Vu, H.C. & Nguyen, T.D. & Ho, A.C., 2022. "A predictive maintenance model for k-out-of-n:F continuously deteriorating systems subject to stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    16. Yang, Li & Ma, Xiaobing & Zhai, Qingqing & Zhao, Yu, 2016. "A delay time model for a mission-based system subject to periodic and random inspection and postponed replacement," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 96-104.
    17. Seyedhosseini, Seyed Mohammad & Moakedi, Hamid & Shahanaghi, Kamran, 2018. "Imperfect inspection optimization for a two-component system subject to hidden and two-stage revealed failures over a finite time horizon," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 141-156.
    18. Taghipour, Sharareh & Banjevic, Dragan, 2012. "Optimal inspection of a complex system subject to periodic and opportunistic inspections and preventive replacements," European Journal of Operational Research, Elsevier, vol. 220(3), pages 649-660.
    19. Xu, Ming & Chen, Tao & Yang, Xianhui, 2012. "Optimal replacement policy for safety-related multi-component multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 87-95.
    20. Wang, Wenbin, 2013. "Models of inspection, routine service, and replacement for a serviceable one-component system," Reliability Engineering and System Safety, Elsevier, vol. 116(C), pages 57-63.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:9:y:2018:i:6:d:10.1007_s13198-018-0747-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.