IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v9y2018i4d10.1007_s13198-017-0665-x.html
   My bibliography  Save this article

Dynamic frequency based parallel k-bat algorithm for massive data clustering (DFBPKBA)

Author

Listed:
  • Ashish Kumar Tripathi

    (Delhi Technological University)

  • Kapil Sharma

    (Delhi Technological University)

  • Manju Bala

    (IP College of Women)

Abstract

In the past one decade there has been significant increase in the growth of digital data. Therefore, good data mining techniques are important for the better decision making. Clustering is one of the key element in the field of data mining. K-means is a very popular algorithm present in the literature which is widely used for the clustering purpose. However k-means algorithm suffers from the problem of stucking into local optimum solution because of it’s dependency on the random initialization of initial cluster center. In this paper a novel variant of Bat algorithm based on dynamic frequency is introduced. Further the proposed variant is hybridized with K-means to present a new approach for clustering in distributed environment. Since evolutionary computation is very computation intensive, traditional sequential algorithms are not able to provide satisfactory results within the reasonable amount of time for the large scale data problems. To mitigate this problem the proposed variant is parallelized using the MapReduce model in the Hadoop framework. The experimental results show that the proposed algorithm has outperformed K-means, PSO and Bat algorithm on eighty percent of the benchmark datasets in terms of intra-cluster distance. Further DBPKBA has also achieved significant speedup for dealing with massive datasets with increase in the number of nodes.

Suggested Citation

  • Ashish Kumar Tripathi & Kapil Sharma & Manju Bala, 2018. "Dynamic frequency based parallel k-bat algorithm for massive data clustering (DFBPKBA)," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(4), pages 866-874, August.
  • Handle: RePEc:spr:ijsaem:v:9:y:2018:i:4:d:10.1007_s13198-017-0665-x
    DOI: 10.1007/s13198-017-0665-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-017-0665-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-017-0665-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bernard J. Jansen & Mimi Zhang & Kate Sobel & Abdur Chowdury, 2009. "Twitter power: Tweets as electronic word of mouth," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(11), pages 2169-2188, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuan Yang & Xiao Li & Daning Hu & Harry Jiannan Wang, 2021. "Differential impacts of social influence on initial and sustained participation in open source software projects," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(9), pages 1133-1147, September.
    2. Langley, David J. & Hoeve, Maarten C. & Ortt, J. Roland & Pals, Nico & van der Vecht, Bob, 2014. "Patterns of Herding and their Occurrence in an Online Setting," Journal of Interactive Marketing, Elsevier, vol. 28(1), pages 16-25.
    3. Li, Xin & Xie, Qianqian & Jiang, Jiaojiao & Zhou, Yuan & Huang, Lucheng, 2019. "Identifying and monitoring the development trends of emerging technologies using patent analysis and Twitter data mining: The case of perovskite solar cell technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 687-705.
    4. Shu-Hsun Ho & Yu-Ling Lin & Robert Carlson Patrick, 2015. "Participant Motivations In A Social Media Community Page," Global Journal of Business Research, The Institute for Business and Finance Research, vol. 9(4), pages 67-75.
    5. Pablo Gomez‐Carrasco & Giovanna Michelon, 2017. "The Power of Stakeholders' Voice: The Effects of Social Media Activism on Stock Markets," Business Strategy and the Environment, Wiley Blackwell, vol. 26(6), pages 855-872, September.
    6. Ko, J. & Kwon, H.W. & Kim, H.S. & Lee, K. & Choi, M.Y., 2014. "Model for Twitter dynamics: Public attention and time series of tweeting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 404(C), pages 142-149.
    7. Alberto Lopez & Eva Guerra & Beatriz Gonzalez & Sergio Madero, 2020. "Consumer sentiments toward brands: the interaction effect between brand personality and sentiments on electronic word of mouth," Journal of Marketing Analytics, Palgrave Macmillan, vol. 8(4), pages 203-223, December.
    8. Rajković, Borislav & Đurić, Ivan & Zarić, Vlade & Glauben, Thomas, 2021. "Gaining trust in the digital age: The potential of social media for increasing the competitiveness of small and medium enterprises," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 13(4).
    9. Krishen, Anjala S. & Dwivedi, Yogesh K. & Bindu, N. & Kumar, K. Satheesh, 2021. "A broad overview of interactive digital marketing: A bibliometric network analysis," Journal of Business Research, Elsevier, vol. 131(C), pages 183-195.
    10. Tatiana David-Negre & Arminda Almedida-Santana & Juan M. Hernández & Sergio Moreno-Gil, 2018. "Understanding European tourists’ use of e-tourism platforms. Analysis of networks," Information Technology & Tourism, Springer, vol. 20(1), pages 131-152, December.
    11. Choi-Meng Leong & Alexa Min-Wei Loi & Steve Woon, 2022. "The influence of social media eWOM information on purchase intention," Journal of Marketing Analytics, Palgrave Macmillan, vol. 10(2), pages 145-157, June.
    12. Budzinski, Oliver & Gaenssle, Sophia, 2018. "The economics of social media stars: An empirical investigation of stardom, popularity, and success on YouTube," Ilmenau Economics Discussion Papers 112, Ilmenau University of Technology, Institute of Economics.
    13. Claussen, Jörg & Engelstätter, Benjamin & Ward, Michael R., 2014. "Susceptibility and influence in social media word-of-mouth," ZEW Discussion Papers 14-129, ZEW - Leibniz Centre for European Economic Research.
    14. Syed Sardar Muhammad & Bidit Lal Dey & Vishanth Weerakkody, 2018. "Analysis of Factors that Influence Customers’ Willingness to Leave Big Data Digital Footprints on Social Media: A Systematic Review of Literature," Information Systems Frontiers, Springer, vol. 20(3), pages 559-576, June.
    15. Martin Quinn & Theodore Lynn & Stephen Jollands & Binesh Nair, 2016. "Domestic Water Charges in Ireland - Issues and Challenges Conveyed through Social Media," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3577-3591, August.
    16. Duan, Huijue Kelly & Vasarhelyi, Miklos A. & Codesso, Mauricio & Alzamil, Zamil, 2023. "Enhancing the government accounting information systems using social media information: An application of text mining and machine learning," International Journal of Accounting Information Systems, Elsevier, vol. 48(C).
    17. Aladwani, Adel M., 2015. "Facilitators, characteristics, and impacts of Twitter use: Theoretical analysis and empirical illustration," International Journal of Information Management, Elsevier, vol. 35(1), pages 15-25.
    18. Zhan Liu & Jialu Shan & Nicole Glassey Balet & Gang Fang, 2017. "Semantic social media analysis of Chinese tourists in Switzerland," Information Technology & Tourism, Springer, vol. 17(2), pages 183-202, June.
    19. Liye Ma & Baohong Sun & Sunder Kekre, 2015. "The Squeaky Wheel Gets the Grease—An Empirical Analysis of Customer Voice and Firm Intervention on Twitter," Marketing Science, INFORMS, vol. 34(5), pages 627-645, September.
    20. Pookulangara, Sanjukta & Koesler, Kristian, 2011. "Cultural influence on consumers' usage of social networks and its' impact on online purchase intentions," Journal of Retailing and Consumer Services, Elsevier, vol. 18(4), pages 348-354.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:9:y:2018:i:4:d:10.1007_s13198-017-0665-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.