IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v9y2018i2d10.1007_s13198-017-0691-8.html
   My bibliography  Save this article

Study of nonparametric estimation details of instant system availability average

Author

Listed:
  • Emmanuel Hagenimana

    (Dalian University of Technology)

  • Song Lixin

    (Dalian University of Technology)

  • Patrick Kandege

    (Dalian University of Technology)

Abstract

Interval availability for repairable systems provides the probability measure where the components system are functioning at some delimited time and still working for a particular time of interval. The probability measure is specialized interested in materials equipment. It is operating, performing since there is any particular case happened. The following article considers the study of nonparametric estimation details of instant system availability average, as data collection n have been tested as a complete cycle period for the system operation to be convenient. The given data collection has been considered to be perfect censorship, in addition to this, the procedure has also been taken to be kept up to the limited period T. The application analysis of this article is discussed, and it has been used to get the improvement of nonparametric estimation to the given instant system availability. A present procedure has been demonstrated helped by a mechanical device to the failure collection data.

Suggested Citation

  • Emmanuel Hagenimana & Song Lixin & Patrick Kandege, 2018. "Study of nonparametric estimation details of instant system availability average," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(2), pages 467-481, April.
  • Handle: RePEc:spr:ijsaem:v:9:y:2018:i:2:d:10.1007_s13198-017-0691-8
    DOI: 10.1007/s13198-017-0691-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-017-0691-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-017-0691-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Helmut Schneider & Bin‐Shan Lin & Colm O'Cinneide, 1990. "Comparison of Nonparametric Estimators for the Renewal Function," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 39(1), pages 55-61, March.
    2. Li, Qi & Racine, Jeff, 2003. "Nonparametric estimation of distributions with categorical and continuous data," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 266-292, August.
    3. Kumbhakar, Subal C. & Park, Byeong U. & Simar, Leopold & Tsionas, Efthymios G., 2007. "Nonparametric stochastic frontiers: A local maximum likelihood approach," Journal of Econometrics, Elsevier, vol. 137(1), pages 1-27, March.
    4. Miguel Reyes & Mario Francisco-Fernández & Ricardo Cao, 2016. "Nonparametric kernel density estimation for general grouped data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 235-249, June.
    5. M. Boukeloua & F. Messaci, 2016. "Asymptotic normality of kernel estimators based upon incomplete data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(3), pages 469-486, September.
    6. Bengtsson, Thomas & Cavanaugh, Joseph E., 2006. "An improved Akaike information criterion for state-space model selection," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2635-2654, June.
    7. Racine, Jeff & Li, Qi, 2004. "Nonparametric estimation of regression functions with both categorical and continuous data," Journal of Econometrics, Elsevier, vol. 119(1), pages 99-130, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R. Dhanya Nair & E. I. Abdul Sathar, 2024. "Nonparametric estimation of extropy based measures under right censoring," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(6), pages 2374-2382, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomasz Gerard Czekaj & Arne Henningsen, 2012. "Comparing Parametric and Nonparametric Regression Methods for Panel Data: the Optimal Size of Polish Crop Farms," IFRO Working Paper 2012/12, University of Copenhagen, Department of Food and Resource Economics.
    2. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    3. Besstremyannaya, Galina, 2015. "Measuring the effect of health insurance companies on the quality of healthcare systems with kernel and parametric regressions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 3-20.
    4. Kazianga, Harounan, 2004. "Schooling Returns for Wage Earners in Burkina Faso: Evidence from the 1994 and 1998 National Surveys," Center Discussion Papers 28388, Yale University, Economic Growth Center.
    5. Li, Zheng & Rejesus, Roderick M. & Zheng, Xiaoyong, 2018. "Nonparametric Estimation and Inference of Production Risk with Categorical Variables," 2018 Annual Meeting, August 5-7, Washington, D.C. 274400, Agricultural and Applied Economics Association.
    6. Sun, Yiguo, 2006. "A Consistent Nonparametric Equality Test Of Conditional Quantile Functions," Econometric Theory, Cambridge University Press, vol. 22(4), pages 614-632, August.
    7. Jeff Racine & Qi Li & Xi Zhu, 2004. "Kernel Estimation of Multivariate Conditional Distributions," Annals of Economics and Finance, Society for AEF, vol. 5(2), pages 211-235, November.
    8. Simar, Leopold & Zelenyuk, Valentin, 2011. "To Smooth or Not to Smooth? The Case of Discrete Variables in Nonparametric Regressions," LIDAM Discussion Papers ISBA 2011042, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Daniel J. Henderson & Alexandre Olbrecht & Solomon W. Polachek, 2006. "Do Former College Athletes Earn More at Work?: A Nonparametric Assessment," Journal of Human Resources, University of Wisconsin Press, vol. 41(3).
    10. Zheng Li & Roderick M. Rejesus & Xiaoyong Zheng, 2021. "Nonparametric Estimation and Inference of Production Risk," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(5), pages 1857-1877, October.
    11. Chu, Chi-Yang & Henderson, Daniel J. & Parmeter, Christopher F., 2017. "On discrete Epanechnikov kernel functions," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 79-105.
    12. Escanciano, Juan Carlos & Song, Kyungchul, 2010. "Testing single-index restrictions with a focus on average derivatives," Journal of Econometrics, Elsevier, vol. 156(2), pages 377-391, June.
    13. Daniel J. Henderson, 2009. "A Non‐parametric Examination of Capital–Skill Complementarity," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(4), pages 519-538, August.
    14. Black, Dan A. & Smith, J.A.Jeffrey A., 2004. "How robust is the evidence on the effects of college quality? Evidence from matching," Journal of Econometrics, Elsevier, vol. 121(1-2), pages 99-124.
    15. Xibin Zhang & Maxwell L. King & Han Lin Shang, 2016. "Bayesian Bandwidth Selection for a Nonparametric Regression Model with Mixed Types of Regressors," Econometrics, MDPI, vol. 4(2), pages 1-27, April.
    16. Galina Besstremyannaya & Jaak Simm, 2014. "Multi-payer health insurance systems in Central and Eastern Europe: lessons from the Czech Republic, Slovakia, and Russia," Working Papers w0203, Center for Economic and Financial Research (CEFIR).
    17. repec:jss:jstsof:27:i05 is not listed on IDEAS
    18. Li, Qi & Ouyang, Desheng, 2005. "Uniform convergence rate of kernel estimation with mixed categorical and continuous data," Economics Letters, Elsevier, vol. 86(2), pages 291-296, February.
    19. Olbrecht, Alexandre, 2009. "Do academically deficient scholarship athletes earn higher wages subsequent to graduation?," Economics of Education Review, Elsevier, vol. 28(5), pages 611-619, October.
    20. Yong Liu & Alan P. Ker, 2021. "Simultaneous borrowing of information across space and time for pricing insurance contracts: An application to rating crop insurance policies," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(1), pages 231-257, March.
    21. Liu, Y. & Ker, A., 2018. "Is There Too Much History in Historical Yield Data," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277293, International Association of Agricultural Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:9:y:2018:i:2:d:10.1007_s13198-017-0691-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.