IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v28y2016i2p235-249.html
   My bibliography  Save this article

Nonparametric kernel density estimation for general grouped data

Author

Listed:
  • Miguel Reyes
  • Mario Francisco-Fernández
  • Ricardo Cao

Abstract

Interval-grouped data are defined, in general, when the event of interest cannot be directly observed and it is only known to have been occurred within an interval. In this framework, a nonparametric kernel density estimator is proposed and studied. The approach is based on the classical Parzen--Rosenblatt estimator and on the generalisation of the binned kernel density estimator. The asymptotic bias and variance of the proposed estimator are derived under usual assumptions, and the effect of using non-equally spaced grouped data is analysed. Additionally, a plug-in bandwidth selector is proposed. Through a comprehensive simulation study, the behaviour of both the estimator and the plug-in bandwidth selector considering different scenarios of data grouping is shown. An application to real data confirms the simulation results, revealing the good performance of the estimator whenever data are not heavily grouped.

Suggested Citation

  • Miguel Reyes & Mario Francisco-Fernández & Ricardo Cao, 2016. "Nonparametric kernel density estimation for general grouped data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 235-249, June.
  • Handle: RePEc:taf:gnstxx:v:28:y:2016:i:2:p:235-249
    DOI: 10.1080/10485252.2016.1163348
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2016.1163348
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2016.1163348?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Ji Hyung & Sasaki, Yuya & Toda, Alexis Akira & Wang, Yulong, 2024. "Tuning parameter-free nonparametric density estimation from tabulated summary data," Journal of Econometrics, Elsevier, vol. 238(1).
    2. Emmanuel Hagenimana & Song Lixin & Patrick Kandege, 2018. "Study of nonparametric estimation details of instant system availability average," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(2), pages 467-481, April.
    3. Miguel Reyes & Mario Francisco-Fernández & Ricardo Cao, 2017. "Bandwidth selection in kernel density estimation for interval-grouped data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 527-545, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:28:y:2016:i:2:p:235-249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.