IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v8y2017i2d10.1007_s13198-016-0524-1.html
   My bibliography  Save this article

Sliding mode control of grid connected brushless doubly fed induction generator driven by wind turbine in variable speed

Author

Listed:
  • M. Abdelbasset Mahboub

    (University of Batna)

  • Said Drid

    (University of Batna)

  • M. A. Sid

    (Setif University)

  • Ridha Cheikh

    (Biskra University
    Centre de éveloppement des Energies Renouvelables, CDER)

Abstract

This paper proposes a robust sliding mode control of grid-connected brushless doubly fed induction generator (BDFIG). The developed algorithm is based on the decoupling control by using oriented grid flux vector control strategy. The decoupling of the active and the reactive stator powers insures an optimal performance of the BDFIG at the sub-synchronous region. The stability analysis of the closed-loop system is rigorously proved using a Lyapunov approach. The robustness of the proposed control with respect to parameter variation is illustrated by simulation results. Furthermore, a maximum power point tracking strategy is added to enhance the wind energy conversion system efficiency.

Suggested Citation

  • M. Abdelbasset Mahboub & Said Drid & M. A. Sid & Ridha Cheikh, 2017. "Sliding mode control of grid connected brushless doubly fed induction generator driven by wind turbine in variable speed," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 788-798, November.
  • Handle: RePEc:spr:ijsaem:v:8:y:2017:i:2:d:10.1007_s13198-016-0524-1
    DOI: 10.1007/s13198-016-0524-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-016-0524-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-016-0524-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soares, Orlando & Gonçalves, Henrique & Martins, António & Carvalho, Adriano, 2010. "Nonlinear control of the doubly-fed induction generator in wind power systems," Renewable Energy, Elsevier, vol. 35(8), pages 1662-1670.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. W. Slimane & M. T. Benchouia & A. Golea & S. Drid, 0. "Second order sliding mode maximum power point tracking of wind turbine systems based on double fed induction generator," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-12.
    2. Juan I. Talpone & Paul F. Puleston & Marcelo G. Cendoya & José. A. Barrado-Rodrigo, 2019. "A Dual-Stator Winding Induction Generator Based Wind-Turbine Controlled via Super-Twisting Sliding Mode," Energies, MDPI, vol. 12(23), pages 1-20, November.
    3. Yasser Belkacem & Said Drid & Abdesslam Makouf & Larbi Chrifi-Alaoui, 2022. "Multi-agent energy management and fault tolerant control of the micro-grid powered with doubly fed induction generator wind farm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 267-277, February.
    4. Ridha Cheikh & Hocine Belmili & Arezki Menacer & Said Drid & L. Chrifi-Alaoui, 2019. "Dynamic behavior analysis under a grid fault scenario of a 2 MW double fed induction generator-based wind turbine: comparative study of the reference frame orientation approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(4), pages 632-643, August.
    5. Oussama Moussa & Rachid Abdessemed & Said Benaggoune, 2019. "Super-twisting sliding mode control for brushless doubly fed induction generator based on WECS," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1145-1157, October.
    6. W. Slimane & M. T. Benchouia & A. Golea & S. Drid, 2020. "Second order sliding mode maximum power point tracking of wind turbine systems based on double fed induction generator," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(3), pages 716-727, June.
    7. Mousavi, Yashar & Bevan, Geraint & Kucukdemiral, Ibrahim Beklan & Fekih, Afef, 2022. "Sliding mode control of wind energy conversion systems: Trends and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Justo, Jackson John & Mwasilu, Francis & Jung, Jin-Woo, 2015. "Doubly-fed induction generator based wind turbines: A comprehensive review of fault ride-through strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 447-467.
    2. Bin Li & Jiahao Zhu & Ranran Zhou & Guoxing Wen, 2022. "Adaptive Neural Network Sliding Mode Control for a Class of SISO Nonlinear Systems," Mathematics, MDPI, vol. 10(7), pages 1-12, April.
    3. El-Kharashi, Eyhab & Farid, Azmy Wadie, 2015. "Accurate assessment of the output energy from the doubly fed induction generators," Energy, Elsevier, vol. 93(P1), pages 406-415.
    4. Boutoubat, M. & Mokrani, L. & Machmoum, M., 2013. "Control of a wind energy conversion system equipped by a DFIG for active power generation and power quality improvement," Renewable Energy, Elsevier, vol. 50(C), pages 378-386.
    5. Jabbari Asl, Hamed & Yoon, Jungwon, 2016. "Power capture optimization of variable-speed wind turbines using an output feedback controller," Renewable Energy, Elsevier, vol. 86(C), pages 517-525.
    6. Kusiak, Andrew & Zhang, Zijun & Verma, Anoop, 2013. "Prediction, operations, and condition monitoring in wind energy," Energy, Elsevier, vol. 60(C), pages 1-12.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:8:y:2017:i:2:d:10.1007_s13198-016-0524-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.