IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v10y2019i5d10.1007_s13198-019-00844-3.html
   My bibliography  Save this article

Super-twisting sliding mode control for brushless doubly fed induction generator based on WECS

Author

Listed:
  • Oussama Moussa

    (University of Batna 2)

  • Rachid Abdessemed

    (University of Batna 2)

  • Said Benaggoune

    (University of Batna 2)

Abstract

This paper deals with the robust power control of a grid-connected brushless doubly-fed induction generator (BDFIG) driven by the variable speed wind turbine. With the using of a super twisting algorithm which is a high-order sliding mode controller (HOSMC). This approach guarantees both the dynamic performance and the same robustness as traditional first order (SMC) algorithm and reduces the chattering phenomenon, which is the biggest disadvantage in the implementation of this technique. The developed algorithm relies on the decoupling control by implementing the strategy of oriented grid flux vector control. In order to enhance the desired performances, an attempt is made by controlling the generated stator active and reactive powers in a linear and decoupled manner to ensure the global asymptotical stability, HOSMC approach is implemented. Therefore, an optimal operation of the BDFIG in sub-synchronous operation is used in addition to the stator power flows where the stator power factor is kept in a unity. The suggested method is examined with the Matlab/Simulink software. The performances and the feasibility of the designed control are illustrated by simulation results.

Suggested Citation

  • Oussama Moussa & Rachid Abdessemed & Said Benaggoune, 2019. "Super-twisting sliding mode control for brushless doubly fed induction generator based on WECS," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1145-1157, October.
  • Handle: RePEc:spr:ijsaem:v:10:y:2019:i:5:d:10.1007_s13198-019-00844-3
    DOI: 10.1007/s13198-019-00844-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-019-00844-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-019-00844-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. Mesbahi & A. Ouari & T. Ghennam & E. M. Berkouk & N. Mesbahi, 2016. "A hybrid wind energy conversion system/active filter for non linear conditions," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(1), pages 1-8, December.
    2. M. Abdelbasset Mahboub & Said Drid & M. A. Sid & Ridha Cheikh, 2017. "Sliding mode control of grid connected brushless doubly fed induction generator driven by wind turbine in variable speed," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 788-798, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdelmalek Ouannou & Adil Brouri & Laila Kadi & Hafid Oubouaddi, 2022. "Identification of switched reluctance machine using fuzzy model," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2833-2846, December.
    2. W. Slimane & M. T. Benchouia & A. Golea & S. Drid, 0. "Second order sliding mode maximum power point tracking of wind turbine systems based on double fed induction generator," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-12.
    3. W. Slimane & M. T. Benchouia & A. Golea & S. Drid, 2020. "Second order sliding mode maximum power point tracking of wind turbine systems based on double fed induction generator," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(3), pages 716-727, June.
    4. Mousavi, Yashar & Bevan, Geraint & Kucukdemiral, Ibrahim Beklan & Fekih, Afef, 2022. "Sliding mode control of wind energy conversion systems: Trends and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ridha Cheikh & Hocine Belmili & Arezki Menacer & Said Drid & L. Chrifi-Alaoui, 2019. "Dynamic behavior analysis under a grid fault scenario of a 2 MW double fed induction generator-based wind turbine: comparative study of the reference frame orientation approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(4), pages 632-643, August.
    2. Juan I. Talpone & Paul F. Puleston & Marcelo G. Cendoya & José. A. Barrado-Rodrigo, 2019. "A Dual-Stator Winding Induction Generator Based Wind-Turbine Controlled via Super-Twisting Sliding Mode," Energies, MDPI, vol. 12(23), pages 1-20, November.
    3. W. Slimane & M. T. Benchouia & A. Golea & S. Drid, 0. "Second order sliding mode maximum power point tracking of wind turbine systems based on double fed induction generator," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-12.
    4. Yasser Belkacem & Said Drid & Abdesslam Makouf & Larbi Chrifi-Alaoui, 2022. "Multi-agent energy management and fault tolerant control of the micro-grid powered with doubly fed induction generator wind farm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 267-277, February.
    5. W. Slimane & M. T. Benchouia & A. Golea & S. Drid, 2020. "Second order sliding mode maximum power point tracking of wind turbine systems based on double fed induction generator," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(3), pages 716-727, June.
    6. Mousavi, Yashar & Bevan, Geraint & Kucukdemiral, Ibrahim Beklan & Fekih, Afef, 2022. "Sliding mode control of wind energy conversion systems: Trends and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:10:y:2019:i:5:d:10.1007_s13198-019-00844-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.