IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v8y2017i2d10.1007_s13198-016-0441-3.html
   My bibliography  Save this article

Mathematical model on vulnerability characterization and its impact on network epidemics

Author

Listed:
  • Kaushik Haldar

    (Birla Institute of Technology, Mesra)

  • Bimal Kumar Mishra

    (Birla Institute of Technology, Mesra)

Abstract

Mathematical modeling and accurate representation of malware spread in a network is a difficult process because of our lack of understanding of several features that form the basis of such spread. Models have been used to analyze and predict the behavior of epidemic spread in networks over the years, to gain a better understanding of the process. The aim of this paper is to understand the process of emergence of vulnerabilities and its relationship with a network epidemic. Eighteen years of vulnerability emergence data has been used in this work. The data includes the total count of vulnerabilities emerging every month. The pattern reveals several important characteristics of the process including frequency peaks at seasonal locations. A steady state distribution of the process is defined. The transition of vulnerability into an exploit is characterized. Finally an interface between this vulnerability model and epidemic models is established through a description of the relationship between the epidemic force of infection and types of vulnerabilities. The paper concludes with several results that can be useful in our attempts to better approximate the spread of malware in networks.

Suggested Citation

  • Kaushik Haldar & Bimal Kumar Mishra, 2017. "Mathematical model on vulnerability characterization and its impact on network epidemics," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 378-392, June.
  • Handle: RePEc:spr:ijsaem:v:8:y:2017:i:2:d:10.1007_s13198-016-0441-3
    DOI: 10.1007/s13198-016-0441-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-016-0441-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-016-0441-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roubos, Alex & Jouini, Oualid, 2013. "Call centers with hyperexponential patience modeling," International Journal of Production Economics, Elsevier, vol. 141(1), pages 307-315.
    2. Alex Roubos & Oualid Jouini, 2013. "Call centers with hyperexponential patience modeling," Post-Print hal-00779104, HAL.
    3. Eusgeld, Irene & Kröger, Wolfgang & Sansavini, Giovanni & Schläpfer, Markus & Zio, Enrico, 2009. "The role of network theory and object-oriented modeling within a framework for the vulnerability analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 94(5), pages 954-963.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Achal Bassamboo & Rouba Ibrahim, 2021. "A General Framework to Compare Announcement Accuracy: Static vs. LES-Based Announcement," Management Science, INFORMS, vol. 67(7), pages 4191-4208, July.
    2. Wu, Baichao & Tang, Aiping & Wu, Jie, 2016. "Modeling cascading failures in interdependent infrastructures under terrorist attacks," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 1-8.
    3. Costa, Rodrigo & Haukaas, Terje & Chang, Stephanie E. & Dowlatabadi, Hadi, 2019. "Object-oriented model of the seismic vulnerability of the fuel distribution network in coastal British Columbia," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 11-23.
    4. Wang, Jingbei & Yang, Naiding & Zhang, Yanlu & Song, Yue, 2018. "Development of the mitigation strategy against the schedule risks of the R&D project through controlling the cascading failure of the R&D network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 390-401.
    5. Zio, E. & Golea, L.R., 2012. "Analyzing the topological, electrical and reliability characteristics of a power transmission system for identifying its critical elements," Reliability Engineering and System Safety, Elsevier, vol. 101(C), pages 67-74.
    6. López, Fernando A. & Páez, Antonio & Carrasco, Juan A. & Ruminot, Natalia A., 2017. "Vulnerability of nodes under controlled network topology and flow autocorrelation conditions," Journal of Transport Geography, Elsevier, vol. 59(C), pages 77-87.
    7. Zio, E. & Golea, L.R. & Sansavini, G., 2012. "Optimizing protections against cascades in network systems: A modified binary differential evolution algorithm," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 72-83.
    8. Freiria, Susana & Ribeiro, Bernardete & Tavares, Alexandre O., 2015. "Understanding road network dynamics: Link-based topological patterns," Journal of Transport Geography, Elsevier, vol. 46(C), pages 55-66.
    9. Rocchetta, Roberto, 2022. "Enhancing the resilience of critical infrastructures: Statistical analysis of power grid spectral clustering and post-contingency vulnerability metrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    10. Nan, Cen & Eusgeld, Irene, 2011. "Adopting HLA standard for interdependency study," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 149-159.
    11. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & He, Zhichao, 2024. "A network-based approach to improving robustness of a high-speed train by structure adjustment," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    12. Rocco S., Claudio M. & Emmanuel Ramirez-Marquez, José, 2013. "Identification of top contributors to system vulnerability via an ordinal optimization based method," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 92-98.
    13. Dunn, Sarah & Holmes, Matthew, 2019. "Development of a hierarchical approach to analyse interdependent infrastructure system failures," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    14. Zio, Enrico & Piccinelli, Roberta, 2010. "Randomized flow model and centrality measure for electrical power transmission network analysis," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 379-385.
    15. Nan, Cen & Eusgeld, Irene & Kröger, Wolfgang, 2013. "Analyzing vulnerabilities between SCADA system and SUC due to interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 76-93.
    16. Øystein Amundrud & Terje Aven & Roger Flage, 2017. "How the definition of security risk can be made compatible with safety definitions," Journal of Risk and Reliability, , vol. 231(3), pages 286-294, June.
    17. Valcamonico, Dario & Sansavini, Giovanni & Zio, Enrico, 2020. "Cooperative co-evolutionary approach to optimize recovery for improving resilience in multi-communities," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    18. Wang, Shuliang & Hong, Liu & Chen, Xueguang, 2012. "Vulnerability analysis of interdependent infrastructure systems: A methodological framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3323-3335.
    19. Zohre Alipour & Mohammad Ali Saniee Monfared & Enrico Zio, 2014. "Comparing topological and reliability-based vulnerability analysis of Iran power transmission network," Journal of Risk and Reliability, , vol. 228(2), pages 139-151, April.
    20. Katina, Polinpapilinho F. & Ariel Pinto, C. & Bradley, Joseph M. & Hester, Patrick T., 2014. "Interdependency-induced risk with applications to healthcare," International Journal of Critical Infrastructure Protection, Elsevier, vol. 7(1), pages 12-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:8:y:2017:i:2:d:10.1007_s13198-016-0441-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.