IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i9d10.1007_s13198-024-02457-x.html
   My bibliography  Save this article

Using particle-based simplified swarm optimization to solve the cold-standby reliability of the gas turbine industry

Author

Listed:
  • Shakuntla Singla

    (MMEC, Maharishi Markandeshwar (Deemed to Be University))

  • Komalpreet Kaur

    (MMEC, Maharishi Markandeshwar (Deemed to Be University))

Abstract

Simplified swarm optimization (SSO) and particle swarm optimization (PSO) are two types of modern swarm intelligence techniques that are often used for optimization. In order to identify the most effective system RRAP with a cold-standby strategic plan while aiming to exploit the reliability of the organization, the article discusses a PSSO procedure that combines UM of PSO and Simplified swarm optimization, PSSO is especially impressive in comparison with other recently incorporated algorithms into four popular applications, namely a sequences scheme, a complex organization, a series–parallel system, and an airspeed indicator defense system for a turbine, with extensive experiments conducted on the pretty standard and well-known four benchmarks of reliability-redundancy allocation problems. Finally, the experiment findings show that the particle-based simplified swarm optimization can successfully solution to address the reliability-redundancy allocation (RRAP) issues using the cold-standby method and performs well in terms of organization reliability, even though the best platform consistency is not attained in all four benchmarks and experiment is done using python and Google colab.

Suggested Citation

  • Shakuntla Singla & Komalpreet Kaur, 2024. "Using particle-based simplified swarm optimization to solve the cold-standby reliability of the gas turbine industry," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(9), pages 4456-4465, September.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:9:d:10.1007_s13198-024-02457-x
    DOI: 10.1007/s13198-024-02457-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-024-02457-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-024-02457-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Heungseob & Kim, Pansoo, 2017. "Reliability–redundancy allocation problem considering optimal redundancy strategy using parallel genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 153-160.
    2. Deepika Garg & Sarita Devi, 2021. "RAP via hybrid genetic simulating annealing algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(3), pages 419-425, June.
    3. Sarita Devi & Deepika Garg, 2020. "Hybrid genetic and particle swarm algorithm: redundancy allocation problem," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 313-319, April.
    4. Xianyong Zhang & Wei-chang Yeh & Yunzhi Jiang & Yaohong Huang & Yingwang Xiao & Li Li, 2018. "A Case Study of Control and Improved Simplified Swarm Optimization for Economic Dispatch of a Stand-Alone Modular Microgrid," Energies, MDPI, vol. 11(4), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chowdury, Md. Abdul Malek & Nath, Rahul & Shukla, Amit K. & Rauniyar, Amit & Muhuri, Pranab K., 2024. "Multi-task optimization in reliability redundancy allocation problem: A multifactorial evolutionary-based approach," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    2. Zaretalab, Arash & Sharifi, Mani & Guilani, Pedram Pourkarim & Taghipour, Sharareh & Niaki, Seyed Taghi Akhavan, 2022. "A multi-objective model for optimizing the redundancy allocation, component supplier selection, and reliable activities for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    3. Peiravi, Abdossaber & Nourelfath, Mustapha & Zanjani, Masoumeh Kazemi, 2022. "Universal redundancy strategy for system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    4. Gholinezhad, Hadi & Zeinal Hamadani, Ali, 2017. "A new model for the redundancy allocation problem with component mixing and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 66-73.
    5. Ling, Xiaoliang & Wei, Yinzhao & Si, Shubin, 2019. "Reliability optimization of k-out-of-n system with random selection of allocative components," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 186-193.
    6. Li, Shuai & Chi, Xuefen & Yu, Baozhu, 2022. "An improved particle swarm optimization algorithm for the reliability–redundancy allocation problem with global reliability," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    7. Meihua Wang & Wei-Chang Yeh & Ta-Chung Chu & Xianyong Zhang & Chia-Ling Huang & Jun Yang, 2018. "Solving Multi-Objective Fuzzy Optimization in Wireless Smart Sensor Networks under Uncertainty Using a Hybrid of IFR and SSO Algorithm," Energies, MDPI, vol. 11(9), pages 1-23, September.
    8. Yuxiong Li & Xianzhen Huang & Xinong En & Pengfei Ding, 2019. "A New System Reliability Optimization Model Based on Swapping Existing Components," Complexity, Hindawi, vol. 2019, pages 1-14, November.
    9. Zhang, Hanxiao & Sun, Muxia & Li, Yan-Fu, 2022. "Reliability–redundancy allocation problem in multi-state flow network: Minimal cut-based approximation scheme," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    10. Ouyang, Zhiyuan & Liu, Yu & Ruan, Sheng-Jia & Jiang, Tao, 2019. "An improved particle swarm optimization algorithm for reliability-redundancy allocation problem with mixed redundancy strategy and heterogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 62-74.
    11. Peiravi, Abdossaber & Nourelfath, Mustapha & Zanjani, Masoumeh Kazemi, 2022. "Redundancy strategies assessment and optimization of k-out-of-n systems based on Markov chains and genetic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    12. Zarghami, Seyed Ashkan & Gunawan, Indra & Schultmann, Frank, 2018. "Integrating entropy theory and cospanning tree technique for redundancy analysis of water distribution networks," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 102-112.
    13. Ruiz-Castro, Juan Eloy & Dawabsha, Mohammed & Alonso, Francisco Javier, 2018. "Discrete-time Markovian arrival processes to model multi-state complex systems with loss of units and an indeterminate variable number of repairpersons," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 114-127.
    14. Yeh, Wei-Chang & He, Min-Fan & Huang, Chia-Ling & Tan, Shi-Yi & Zhang, Xianyong & Huang, Yaohong & Li, Li, 2020. "New genetic algorithm for economic dispatch of stand-alone three-modular microgrid in DongAo Island," Applied Energy, Elsevier, vol. 263(C).
    15. Wang, Wei & Wu, Zhiying & Xiong, Junlin & Xu, Yaofeng, 2018. "Redundancy optimization of cold-standby systems under periodic inspection and maintenance," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 394-402.
    16. Nabaranjan Bhattacharyee & Nirmal Kumar & Sanat Kumar Mahato & Puja Supakar, 2022. "Reliability of the illumination of the darkroom with different scenario of the switching methods in uncertain environment," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2482-2499, October.
    17. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2021. "Dynamic task distribution balancing primary mission work and damage reduction work in parallel systems exposed to shocks," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    18. Yeh, Wei-Chang, 2022. "BAT-based algorithm for finding all Pareto solutions of the series-parallel redundancy allocation problem with mixed components," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    19. Yeh, Wei-Chang & Zhu, Wenbo & Tan, Shi-Yi & Wang, Gai-Ge & Yeh, Yuan-Hui, 2022. "Novel general active reliability redundancy allocation problems and algorithm," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    20. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Optimizing partial component activation policy in multi-attempt missions," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:9:d:10.1007_s13198-024-02457-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.