Real power loss reduction by Toxotes kimberleyensis, Opposition based Chaotic Septentrion Red Snapper and Charidotella based optimization algorithms
Author
Abstract
Suggested Citation
DOI: 10.1007/s13198-023-01966-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lenin Kanagasabai, 2021. "Real power loss reduction by enhanced Apple Maggot optimization algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(6), pages 1385-1396, December.
- Mini Vishnu & Sunil Kumar T. K., 2020. "An Improved Solution for Reactive Power Dispatch Problem Using Diversity-Enhanced Particle Swarm Optimization," Energies, MDPI, vol. 13(11), pages 1-21, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Samson Ademola Adegoke & Yanxia Sun & Zenghui Wang, 2023. "Minimization of Active Power Loss Using Enhanced Particle Swarm Optimization," Mathematics, MDPI, vol. 11(17), pages 1-17, August.
- Lenin Kanagasabai, 2022. "Real power loss reduction by quantum based Ptilonorhynchus violaceus optimization and Haliastur Indus algorithms," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(4), pages 1913-1931, August.
- Lenin Kanagasabai, 2022. "Real power loss dwindling and voltage reliability enrichment by gradient based optimization algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2727-2742, October.
- Lenin Kanagasabai, 2023. "Real power loss reduction by extreme learning machine based Panthera leo, chaotic based Jungle search and Quantum based Chipmunk search optimization algorithms," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 55-78, March.
- Paweł Ocłoń & Maciej Ławryńczuk & Marek Czamara, 2021. "A New Solar Assisted Heat Pump System with Underground Energy Storage: Modelling and Optimisation," Energies, MDPI, vol. 14(16), pages 1-15, August.
- Zhang, Xiao & Wu, Zhi & Sun, Qirun & Gu, Wei & Zheng, Shu & Zhao, Jingtao, 2024. "Application and progress of artificial intelligence technology in the field of distribution network voltage Control:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Robert Małkowski & Michał Izdebski & Piotr Miller, 2020. "Adaptive Algorithm of a Tap-Changer Controller of the Power Transformer Supplying the Radial Network Reducing the Risk of Voltage Collapse," Energies, MDPI, vol. 13(20), pages 1-25, October.
- Lenin Kanagasabai, 2022. "Mathematics based calculation and stemonitis inspired optimization algorithms for loss reduction and power solidity augmentation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2710-2726, October.
- Peng Cheng & Zhiyu Xu & Ruiye Li & Chao Shi, 2022. "A Hybrid Taguchi Particle Swarm Optimization Algorithm for Reactive Power Optimization of Deep-Water Semi-Submersible Platforms with New Energy Sources," Energies, MDPI, vol. 15(13), pages 1-16, June.
- Lenin Kanagasabai, 2022. "Tangible power loss lessening by hybridized beautiful demoiselle-enriched particle swarm and pyramid optimization algorithms," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 450-468, February.
- Andrei M. Tudose & Irina I. Picioroaga & Dorian O. Sidea & Constantin Bulac, 2021. "Solving Single- and Multi-Objective Optimal Reactive Power Dispatch Problems Using an Improved Salp Swarm Algorithm," Energies, MDPI, vol. 14(5), pages 1-20, February.
- Lenin Kanagasabai, 2022. "Buoyancy based optimization algorithm for real power loss diminution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2442-2457, October.
- Lenin Kanagasabai, 2022. "Jerusalem artichoke algorithm for power loss reduction and power stability enhancement," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(4), pages 1788-1800, August.
- Lalit Kumar & Sushil Kumar Gupta & Sanjay Kumar, 2022. "A novel brainstorm based optimization method for optimum planning of reactive power with FACTS devices," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 3062-3073, December.
- Mahmoud Hemeida & Tomonobu Senjyu & Salem Alkhalaf & Asmaa Fawzy & Mahrous Ahmed & Dina Osheba, 2022. "Reactive Power Management Based Hybrid GAEO," Sustainability, MDPI, vol. 14(11), pages 1-17, June.
- Lenin Kanagasabai, 2022. "Real Power loss reduction by hybrid pan troglodytes optimization: extreme learning machine based augmented sine: cosine algorithms," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1102-1120, June.
More about this item
Keywords
Optimal reactive power; Transmission loss; Toxotes kimberleyensis; Septentrion Red Snapper; Charidotella;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:14:y:2023:i:5:d:10.1007_s13198-023-01966-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.