IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v13y2022i4d10.1007_s13198-021-01550-9.html
   My bibliography  Save this article

Jerusalem artichoke algorithm for power loss reduction and power stability enhancement

Author

Listed:
  • Lenin Kanagasabai

    (Prasad V. Potluri Siddhartha Institute of Technology)

Abstract

In this paper Jerusalem artichoke optimization (JO) and pollination algorithm (JP) is applied to solve the power loss lessening problem. Key objectives are power loss abridgment with power constancy augmentation. The problem characterizes a central apprehension in the effectual and dependable process of systems, grounded on the appropriate harmonization of several expedients. Consequently, problem design is an extravagant nonlinear which entails exceedingly acting computational procedures to recognize the optimum solution. Jerusalem artichoke optimization (JO) algorithm is enthused by the growing procedure of the artichoke. Jerusalem artichoke engenders Heliotropism activities in the day time. These engagements that materialize as a consequence of the asymmetrical evolution on the differing edges of the Jerusalem artichoke tempted the lopsided propagation of the progression of chemical substance on dual sides of the Jerusalem artichoke stem. The night-time re-orientation happens since the growing chemical substances -Indole acetic acid (IAA) ensues on the west direction, instigating the lengthening of the west direction of the Jerusalem artichoke at the night. In the proposed Jerusalem artichoke optimization (JO) algorithm the stalk dimension of each Jerusalem artichoke signifies a solution of the problem. Each Jerusalem artichoke possesses a fitness value analogous to the rate of objective function of the problem which determines the dimension of its stalk. The enhanced fitness rate signifies the extensive Jerusalem artichokes stalk. Jerusalem artichoke Pollination Algorithm (JP) is designed based on the pollination characteristics with Biotic and cross-pollination. A regulator probability “H” is utilized to shift between general global to concentrated local pollination. Proposed Jerusalem artichoke optimization (JO) and pollination algorithm (JP) is corroborated in IEEE 30 and 14, 30, 57, 118, 300 bus test systems. Loss lessening, power divergence curtailing, and power constancy augmentation has been achieved.

Suggested Citation

  • Lenin Kanagasabai, 2022. "Jerusalem artichoke algorithm for power loss reduction and power stability enhancement," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(4), pages 1788-1800, August.
  • Handle: RePEc:spr:ijsaem:v:13:y:2022:i:4:d:10.1007_s13198-021-01550-9
    DOI: 10.1007/s13198-021-01550-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-021-01550-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-021-01550-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrei M. Tudose & Irina I. Picioroaga & Dorian O. Sidea & Constantin Bulac, 2021. "Solving Single- and Multi-Objective Optimal Reactive Power Dispatch Problems Using an Improved Salp Swarm Algorithm," Energies, MDPI, vol. 14(5), pages 1-20, February.
    2. Mini Vishnu & Sunil Kumar T. K., 2020. "An Improved Solution for Reactive Power Dispatch Problem Using Diversity-Enhanced Particle Swarm Optimization," Energies, MDPI, vol. 13(11), pages 1-21, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lenin Kanagasabai, 2022. "Real power loss dwindling and voltage reliability enrichment by gradient based optimization algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2727-2742, October.
    2. Lenin Kanagasabai, 2023. "Real power loss reduction by extreme learning machine based Panthera leo, chaotic based Jungle search and Quantum based Chipmunk search optimization algorithms," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 55-78, March.
    3. Lenin Kanagasabai, 2022. "Mathematics based calculation and stemonitis inspired optimization algorithms for loss reduction and power solidity augmentation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2710-2726, October.
    4. Mahmoud Hemeida & Tomonobu Senjyu & Salem Alkhalaf & Asmaa Fawzy & Mahrous Ahmed & Dina Osheba, 2022. "Reactive Power Management Based Hybrid GAEO," Sustainability, MDPI, vol. 14(11), pages 1-17, June.
    5. Samson Ademola Adegoke & Yanxia Sun & Zenghui Wang, 2023. "Minimization of Active Power Loss Using Enhanced Particle Swarm Optimization," Mathematics, MDPI, vol. 11(17), pages 1-17, August.
    6. Rahmad Syah & Safoura Faghri & Mahyuddin KM Nasution & Afshin Davarpanah & Marek Jaszczur, 2021. "Modeling and Optimization of Wind Turbines in Wind Farms for Solving Multi-Objective Reactive Power Dispatch Using a New Hybrid Scheme," Energies, MDPI, vol. 14(18), pages 1-22, September.
    7. Tawhid, Mohamed A. & Ibrahim, Abdelmonem M., 2022. "Improved salp swarm algorithm combined with chaos," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 113-148.
    8. Lenin Kanagasabai, 2022. "Real power loss reduction by quantum based Ptilonorhynchus violaceus optimization and Haliastur Indus algorithms," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(4), pages 1913-1931, August.
    9. Lenin Kanagasabai, 2021. "Real power loss reduction by enhanced Apple Maggot optimization algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(6), pages 1385-1396, December.
    10. Lenin Kanagasabai, 2023. "Real power loss reduction by Toxotes kimberleyensis, Opposition based Chaotic Septentrion Red Snapper and Charidotella based optimization algorithms," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1621-1638, October.
    11. Paweł Ocłoń & Maciej Ławryńczuk & Marek Czamara, 2021. "A New Solar Assisted Heat Pump System with Underground Energy Storage: Modelling and Optimisation," Energies, MDPI, vol. 14(16), pages 1-15, August.
    12. Zhang, Xiao & Wu, Zhi & Sun, Qirun & Gu, Wei & Zheng, Shu & Zhao, Jingtao, 2024. "Application and progress of artificial intelligence technology in the field of distribution network voltage Control:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    13. Robert Małkowski & Michał Izdebski & Piotr Miller, 2020. "Adaptive Algorithm of a Tap-Changer Controller of the Power Transformer Supplying the Radial Network Reducing the Risk of Voltage Collapse," Energies, MDPI, vol. 13(20), pages 1-25, October.
    14. Peng Cheng & Zhiyu Xu & Ruiye Li & Chao Shi, 2022. "A Hybrid Taguchi Particle Swarm Optimization Algorithm for Reactive Power Optimization of Deep-Water Semi-Submersible Platforms with New Energy Sources," Energies, MDPI, vol. 15(13), pages 1-16, June.
    15. Lu Liu & Yun Zeng, 2023. "Intelligent ISSA-Based Non-Singular Terminal Sliding-Mode Control of DC–DC Boost Converter Feeding a Constant Power Load System," Energies, MDPI, vol. 16(13), pages 1-23, June.
    16. Lenin Kanagasabai, 2022. "Tangible power loss lessening by hybridized beautiful demoiselle-enriched particle swarm and pyramid optimization algorithms," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 450-468, February.
    17. Andrei M. Tudose & Irina I. Picioroaga & Dorian O. Sidea & Constantin Bulac, 2021. "Solving Single- and Multi-Objective Optimal Reactive Power Dispatch Problems Using an Improved Salp Swarm Algorithm," Energies, MDPI, vol. 14(5), pages 1-20, February.
    18. Lenin Kanagasabai, 2022. "Buoyancy based optimization algorithm for real power loss diminution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2442-2457, October.
    19. Lenin Kanagasabai, 2022. "Real Power loss reduction by hybrid pan troglodytes optimization: extreme learning machine based augmented sine: cosine algorithms," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1102-1120, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:13:y:2022:i:4:d:10.1007_s13198-021-01550-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.