IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v13y2022i4d10.1007_s13198-021-01602-0.html
   My bibliography  Save this article

Real power loss reduction by quantum based Ptilonorhynchus violaceus optimization and Haliastur Indus algorithms

Author

Listed:
  • Lenin Kanagasabai

    (Prasad V. Potluri Siddhartha Institute of Technology)

Abstract

In this paper Quantum based Ptilonorhynchus violaceus optimization (QPVO) algorithm and Haliastur Indus (HI) optimization algorithm is applied to solve the power loss lessening problem. Key aims of the work are loss dripping, power steadiness enhancement and deviance lessening. In QPVO Rendering to the behaviours of Ptilonorhynchus violaceus males are prerequisite to construct nests to charm the female Ptilonorhynchus violaceus for mating and to reproduce the offspring’s. Exclusive protagonist Ptilonorhynchus violaceus disturb the other nests which have been constructed by remaining male Ptilonorhynchus violaceus. When male Ptilonorhynchus violaceus are hectic in construction an arbour on the ground, they might be confronted by other faunas or be entirely disregarded. In numerous circumstances, robust male Ptilonorhynchus violaceus snip resources from feebler males, or even extinguish their arbours. In Quantum based Ptilonorhynchus violaceus optimization (QPVO) algorithm, all Ptilonorhynchus violaceus are encoded by qubits designated on the Bloch sphere by fixing the swarm magnitude to NB and the area dimension G. Haliastur Indus (HI) optimization algorithm is designed by imitating the natural actions of Haliastur Indus. Haliastur Indus are frequently eyeing for nutrition and obligate extraordinary verve when they are quenched, which creates them drive extensive remoteness for exploration of nutrition, nonetheless if they are voracious, they do not obligate sufficient verve to hover lengthy and mien for nutrition subsequent to the resilient Haliastur Indus and turn out to be belligerent while voracious. This segment is utilized to transferal of exploration segment to exploitation stage, which is stimulated by the degree at which the Haliastur Indus is quenched. Proposed Quantum based Ptilonorhynchus violaceus optimization (QPVO) algorithm and Haliastur Indus (HI) optimization algorithm is corroborated in IEEE 30 bus system and IEEE 14, 30, 57, 118, 300 bus test systems without considering the voltage constancy index. True power loss lessening, voltage divergence curtailing, and voltage constancy index augmentation has been attained.

Suggested Citation

  • Lenin Kanagasabai, 2022. "Real power loss reduction by quantum based Ptilonorhynchus violaceus optimization and Haliastur Indus algorithms," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(4), pages 1913-1931, August.
  • Handle: RePEc:spr:ijsaem:v:13:y:2022:i:4:d:10.1007_s13198-021-01602-0
    DOI: 10.1007/s13198-021-01602-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-021-01602-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-021-01602-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vikas Singh Bhadoria & Nidhi Singh Pal & Vivek Shrivastava, 2019. "Artificial immune system based approach for size and location optimization of distributed generation in distribution system," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(3), pages 339-349, June.
    2. Garima Goswami & Pankaj Kumar Goswami, 2021. "A design analysis and implementation of PI, PID and fuzzy supervised shunt APF at nonlinear load application to improve power quality and system reliability," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(6), pages 1247-1261, December.
    3. Ran Wei & Qirui Gan & Huiquan Wang & Yue You & Xin Dang, 2020. "Short-term multiple power type prediction based on deep learning," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(4), pages 835-841, August.
    4. Anwar Shahzad Siddiqui & Mohd Tauseef Khan & Fahad Iqbal, 2017. "Determination of optimal location of TCSC and STATCOM for congestion management in deregulated power system," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(1), pages 110-117, January.
    5. Mini Vishnu & Sunil Kumar T. K., 2020. "An Improved Solution for Reactive Power Dispatch Problem Using Diversity-Enhanced Particle Swarm Optimization," Energies, MDPI, vol. 13(11), pages 1-21, June.
    6. Vijay Raviprabakaran & Ravichandran Coimbatore Subramanian, 2018. "Enhanced ant colony optimization to solve the optimal power flow with ecological emission," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(1), pages 58-65, February.
    7. Nikhil Dev & Rajesh Kumar Attri, 2017. "Evaluation of gas turbine power plant efficiency using graph theoretic approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 676-689, November.
    8. Abdelmalek Gacem & Djilani Benattous, 2017. "Hybrid GA–PSO for optimal placement of static VAR compensators in power system," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(1), pages 247-254, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mandhir Kumar Verma & Vivekananda Mukherjee & Vinod Kumar Yadav & Santosh Ghosh, 2020. "Constraints for effective distribution network expansion planning: an ample review," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(3), pages 531-546, June.
    2. Samson Ademola Adegoke & Yanxia Sun & Zenghui Wang, 2023. "Minimization of Active Power Loss Using Enhanced Particle Swarm Optimization," Mathematics, MDPI, vol. 11(17), pages 1-17, August.
    3. Abdelmalek Ouannou & Adil Brouri & Laila Kadi & Hafid Oubouaddi, 2022. "Identification of switched reluctance machine using fuzzy model," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2833-2846, December.
    4. Lenin Kanagasabai, 2022. "Real power loss dwindling and voltage reliability enrichment by gradient based optimization algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2727-2742, October.
    5. Ali Salmasnia & Sadegh Noori & Hadi Mokhtari, 2019. "A redundancy allocation problem by using utility function method and ant colony optimization: tradeoff between availability and total cost," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(3), pages 416-428, June.
    6. Al-Attar Ali Mohamed & Shimaa Ali & Salem Alkhalaf & Tomonobu Senjyu & Ashraf M. Hemeida, 2019. "Optimal Allocation of Hybrid Renewable Energy System by Multi-Objective Water Cycle Algorithm," Sustainability, MDPI, vol. 11(23), pages 1-20, November.
    7. Lenin Kanagasabai, 2023. "Real power loss reduction by extreme learning machine based Panthera leo, chaotic based Jungle search and Quantum based Chipmunk search optimization algorithms," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 55-78, March.
    8. Malika Fodil & Ali Djerioui & Mohamed Ladjal & Abdelhakim Saim & Fouad Berrabah & Hemza Mekki & Samir Zeghlache & Azeddine Houari & Mohamed Fouad Benkhoris, 2023. "Optimization of PI Controller Parameters by GWO Algorithm for Five-Phase Asynchronous Motor," Energies, MDPI, vol. 16(10), pages 1-14, May.
    9. Zelan Li & Yijia Cao & Le Van Dai & Xiaoliang Yang & Thang Trung Nguyen, 2019. "Optimal Power Flow for Transmission Power Networks Using a Novel Metaheuristic Algorithm," Energies, MDPI, vol. 12(22), pages 1-36, November.
    10. Lenin Kanagasabai, 2023. "Real power loss reduction by Toxotes kimberleyensis, Opposition based Chaotic Septentrion Red Snapper and Charidotella based optimization algorithms," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1621-1638, October.
    11. Paweł Ocłoń & Maciej Ławryńczuk & Marek Czamara, 2021. "A New Solar Assisted Heat Pump System with Underground Energy Storage: Modelling and Optimisation," Energies, MDPI, vol. 14(16), pages 1-15, August.
    12. Zhang, Xiao & Wu, Zhi & Sun, Qirun & Gu, Wei & Zheng, Shu & Zhao, Jingtao, 2024. "Application and progress of artificial intelligence technology in the field of distribution network voltage Control:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    13. Robert Małkowski & Michał Izdebski & Piotr Miller, 2020. "Adaptive Algorithm of a Tap-Changer Controller of the Power Transformer Supplying the Radial Network Reducing the Risk of Voltage Collapse," Energies, MDPI, vol. 13(20), pages 1-25, October.
    14. Lenin Kanagasabai, 2022. "Mathematics based calculation and stemonitis inspired optimization algorithms for loss reduction and power solidity augmentation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2710-2726, October.
    15. Kuang-Hua Hu & Ming-Fu Hsu & Fu-Hsiang Chen & Mu-Ziyun Liu, 2021. "Identifying the key factors of subsidiary supervision and management using an innovative hybrid architecture in a big data environment," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.
    16. Peng Cheng & Zhiyu Xu & Ruiye Li & Chao Shi, 2022. "A Hybrid Taguchi Particle Swarm Optimization Algorithm for Reactive Power Optimization of Deep-Water Semi-Submersible Platforms with New Energy Sources," Energies, MDPI, vol. 15(13), pages 1-16, June.
    17. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    18. Lenin Kanagasabai, 2022. "Tangible power loss lessening by hybridized beautiful demoiselle-enriched particle swarm and pyramid optimization algorithms," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 450-468, February.
    19. Andrei M. Tudose & Irina I. Picioroaga & Dorian O. Sidea & Constantin Bulac, 2021. "Solving Single- and Multi-Objective Optimal Reactive Power Dispatch Problems Using an Improved Salp Swarm Algorithm," Energies, MDPI, vol. 14(5), pages 1-20, February.
    20. Nabaranjan Bhattacharyee & Nirmal Kumar & Sanat Kumar Mahato & Puja Supakar, 2022. "Reliability of the illumination of the darkroom with different scenario of the switching methods in uncertain environment," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2482-2499, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:13:y:2022:i:4:d:10.1007_s13198-021-01602-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.