IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v13y2022i6d10.1007_s13198-022-01750-x.html
   My bibliography  Save this article

Change point problem for Markovian arrival queueing models: Bayes factor approach

Author

Listed:
  • Saroja Kumar Singh

    (Sambalpur University
    Central University of Odisha)

Abstract

This paper considers two Markovian arrival single server queueing models, namely M/M/1 and $$M/E_r/1$$ M / E r / 1 . Under the steady state condition, we observe the number of customer present at different time points for the M/M/1 queue while in case of an $$M/E_r/1$$ M / E r / 1 queue we consider the number of arrivals during the service time of a customer. A Bayesian approach is applied to study the change point problems. Testing of hypothesis for change versus no-change is carried out using predictive distributions. Further, Bayes factors are derived for change versus no-change for both the M/M/1 and $$M/E_r/1$$ M / E r / 1 queueing models under natural conjugate beta prior distribution. At last, numerical results are provided for the illustration.

Suggested Citation

  • Saroja Kumar Singh, 2022. "Change point problem for Markovian arrival queueing models: Bayes factor approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2847-2854, December.
  • Handle: RePEc:spr:ijsaem:v:13:y:2022:i:6:d:10.1007_s13198-022-01750-x
    DOI: 10.1007/s13198-022-01750-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-022-01750-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-022-01750-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saroja Kumar Singh & Sarat Kumar Acharya, 2022. "A Bayesian inference to estimate change point for traffic intensity in M/M/1 queueing model," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 166-206, March.
    2. Singh, Saroja Kumar & Acharya, Sarat Kumar & Cruz, Frederico R.B. & Quinino, Roberto C., 2021. "Bayesian sample size determination in a single-server deterministic queueing system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 17-29.
    3. Bradley P. Carlin & Alan E. Gelfand & Adrian F. M. Smith, 1992. "Hierarchical Bayesian Analysis of Changepoint Problems," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 389-405, June.
    4. Lee, Chung-Bow, 1998. "Bayesian analysis of a change-point in exponential families with applications," Computational Statistics & Data Analysis, Elsevier, vol. 27(2), pages 195-208, April.
    5. Sarat Kumar Acharya & César Emilio Villarreal-Rodríguez, 2013. "Change point estimation of service rate in an M/M/1/m queue," International Journal of Mathematics in Operational Research, Inderscience Enterprises Ltd, vol. 5(1), pages 110-120.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arpita Basak & Amit Choudhury, 2024. "Bayesian estimation of finite buffer size in single server Markovian queuing system," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(6), pages 2366-2373, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Saroja Kumar & Cruz, Gabriel M.B. & Cruz, Frederico R.B., 2024. "Change point estimation of service rate in M/M/1/m queues: A Bayesian approach," Applied Mathematics and Computation, Elsevier, vol. 465(C).
    2. Singh, Saroja Kumar & Acharya, Sarat Kumar & Cruz, F.R.B. & Cançado, André L.F., 2023. "Change point estimation in an M/M/2 queue with heterogeneous servers," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 182-194.
    3. Gebrenegus Ghilagaber & Parfait Munezero, 2020. "Bayesian change-point modelling of the effects of 3-points-for-a-win rule in football," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(2), pages 248-264, January.
    4. Saroja Kumar Singh & Sarat Kumar Acharya, 2022. "A Bayesian inference to estimate change point for traffic intensity in M/M/1 queueing model," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 166-206, March.
    5. Fitzpatrick, Matthew, 2014. "Geometric ergodicity of the Gibbs sampler for the Poisson change-point model," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 55-61.
    6. Owyang, Michael T. & Piger, Jeremy & Wall, Howard J., 2008. "A state-level analysis of the Great Moderation," Regional Science and Urban Economics, Elsevier, vol. 38(6), pages 578-589, November.
    7. Ruggieri, Eric & Antonellis, Marcus, 2016. "An exact approach to Bayesian sequential change point detection," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 71-86.
    8. Michael W. Robbins & Colin M. Gallagher & Robert B. Lund, 2016. "A General Regression Changepoint Test for Time Series Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 670-683, April.
    9. DAVID E. ALLEN & MICHAEL McALEER & ROBERT J. POWELL & ABHAY K. SINGH, 2018. "Non-Parametric Multiple Change Point Analysis Of The Global Financial Crisis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 1-23, June.
    10. Gorbunova, A.V. & Lebedev, A.V., 2022. "Nontransitivity of tuples of random variables with polynomial density and its effects in Bayesian models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 181-192.
    11. Ľluboš Pástor & Robert F. Stambaugh, 2001. "The Equity Premium and Structural Breaks," Journal of Finance, American Finance Association, vol. 56(4), pages 1207-1239, August.
    12. Gordon, Stephen & Bélanger, Gilles, 1996. "Échantillonnage de Gibbs et autres applications économétriques des chaînes markoviennes," L'Actualité Economique, Société Canadienne de Science Economique, vol. 72(1), pages 27-49, mars.
    13. Gary M. Koop & Simon M. Potter, 2004. "Forecasting and Estimating Multiple Change-point Models with an Unknown Number of Change-points," Discussion Papers in Economics 04/31, Division of Economics, School of Business, University of Leicester.
    14. Li Zhaoyuan & Tian Maozai, 2017. "Detecting Change-Point via Saddlepoint Approximations," Journal of Systems Science and Information, De Gruyter, vol. 5(1), pages 48-73, February.
    15. Rosalia Condorelli, 2013. "A Bayesian analysis of suicide data," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(2), pages 1143-1161, February.
    16. Eric F. Lock & Nidhi Kohli & Maitreyee Bose, 2018. "Detecting Multiple Random Changepoints in Bayesian Piecewise Growth Mixture Models," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 733-750, September.
    17. M. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2006. "Forecasting Time Series Subject to Multiple Structural Breaks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 73(4), pages 1057-1084.
    18. R. Rotondi & E. Garavaglia, 2002. "Statistical Analysis of the Completeness of a Seismic Catalogue," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 25(3), pages 245-258, March.
    19. Griffin, J.E. & Steel, M.F.J., 2011. "Stick-breaking autoregressive processes," Journal of Econometrics, Elsevier, vol. 162(2), pages 383-396, June.
    20. Chen, Cathy W.S. & Chan, Jennifer S.K. & So, Mike K.P. & Lee, Kevin K.M., 2011. "Classification in segmented regression problems," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2276-2287, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:13:y:2022:i:6:d:10.1007_s13198-022-01750-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.