IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v13y2022i2d10.1007_s13198-021-01343-0.html
   My bibliography  Save this article

Reliability analysis of log-normal distribution with nonconstant parameters under constant-stress model

Author

Listed:
  • Wei Cui

    (Jilin University of Finance and Economics)

  • Zai-zai Yan

    (Inner Mongolia University of Technology
    Inner Mongolia Key Laboratory of Statistical Analysis Theory for Life Data and Neural Network Modeling)

  • Xiu-yun Peng

    (Inner Mongolia University of Technology
    Inner Mongolia Key Laboratory of Statistical Analysis Theory for Life Data and Neural Network Modeling)

  • Gai-mei Zhang

    (Huhhot First Hospital)

Abstract

Under constant-stress accelerated life test, the general progressive type-II censoring sample and the two parameters following the linear Arrhenius model, the point estimation and interval estimation of the two parameters log-normal distribution were discussed. The unknown parameters of the model as well as reliability and hazard rate functions are estimated by using Maximum likelihood (ML) and Bayesian methods. The maximum-likelihood estimates are derived by the Newton–Raphson method and the corresponding asymptotic variance is derived by the Fisher information matrix. Since the Bayesian estimates (BEs) of the unknown parameters cannot be expressed explicitly, the approximate BEs of the unknown parameters. The approximate highest posterior density confidence intervals are calculated. The practicality of the proposed method is illustrated by simulation study and real data application analysis.

Suggested Citation

  • Wei Cui & Zai-zai Yan & Xiu-yun Peng & Gai-mei Zhang, 2022. "Reliability analysis of log-normal distribution with nonconstant parameters under constant-stress model," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 818-831, April.
  • Handle: RePEc:spr:ijsaem:v:13:y:2022:i:2:d:10.1007_s13198-021-01343-0
    DOI: 10.1007/s13198-021-01343-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-021-01343-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-021-01343-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A.C. Kimber, 1990. "Exploratory Data Analysis for Possibly Censored Data from Skewed Distributions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 39(1), pages 21-30, March.
    2. W. R. Gilks & P. Wild, 1992. "Adaptive Rejection Sampling for Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 337-348, June.
    3. Seo, J.H. & Jung, M. & Kim, C.M., 2009. "Design of accelerated life test sampling plans with a nonconstant shape parameter," European Journal of Operational Research, Elsevier, vol. 197(2), pages 659-666, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pang, W. K. & Yang, Z. H. & Hou, S. H. & Leung, P. K., 2002. "Non-uniform random variate generation by the vertical strip method," European Journal of Operational Research, Elsevier, vol. 142(3), pages 595-609, November.
    2. Z. Rezaei Ghahroodi & M. Ganjali, 2013. "A Bayesian approach for analysing longitudinal nominal outcomes using random coefficients transitional generalized logit model: an application to the labour force survey data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(7), pages 1425-1445, July.
    3. Antonello Loddo & Shawn Ni & Dongchu Sun, 2011. "Selection of Multivariate Stochastic Volatility Models via Bayesian Stochastic Search," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 342-355, July.
    4. Nandram, Balgobin & Zelterman, Daniel, 2007. "Computational Bayesian inference for estimating the size of a finite population," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2934-2945, March.
    5. Wang, Liang & Wu, Shuo-Jye & Zhang, Chunfang & Dey, Sanku & Tripathi, Yogesh Mani, 2022. "Analysis for constant-stress model on multicomponent system from generalized inverted exponential distribution with stress dependent parameters," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 301-316.
    6. Fuentes-García, Ruth & Mena, Ramsés H. & Walker, Stephen G., 2009. "A nonparametric dependent process for Bayesian regression," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 1112-1119, April.
    7. Deschamps, Philippe J., 2012. "Bayesian estimation of generalized hyperbolic skewed student GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3035-3054.
    8. Hattam, Caroline & Holloway, Garth J., 2007. "Bayes Estimates of Time to Organic Certification," 81st Annual Conference, April 2-4, 2007, Reading University, UK 7979, Agricultural Economics Society.
    9. Peter F. Thall & Lurdes Y. T. Inoue & Thomas G. Martin, 2002. "Adaptive Decision Making in a Lymphocyte Infusion Trial," Biometrics, The International Biometric Society, vol. 58(3), pages 560-568, September.
    10. M. Ghosh & B. Carlin & M. Srivastava, 1995. "Probability matching priors for linear calibration," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 4(2), pages 333-357, December.
    11. Pang, Wan Kai & Yu, Bosco Wing-Tong & Troutt, Marvin D. & Hou, Shui Hung, 2008. "A simulation-based approach to the study of coefficient of variation of dividend yields," European Journal of Operational Research, Elsevier, vol. 189(2), pages 559-569, September.
    12. Mike G. Tsionas, 2023. "Linex and double-linex regression for parameter estimation and forecasting," Annals of Operations Research, Springer, vol. 323(1), pages 229-245, April.
    13. Chong Z. He & Dongchu Sun & Yolande Tra, 2001. "Bayesian Modeling of Age-Specific Survival in Nesting Studies Under Dirichlet Priors," Biometrics, The International Biometric Society, vol. 57(4), pages 1059-1066, December.
    14. Willy Alanya & Gabriel Rodríguez, 2018. "Stochastic Volatility in the Peruvian Stock Market and Exchange Rate Returns: A Bayesian Approximation," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(3), pages 354-385, December.
    15. Amy H. Herring & Joseph G. Ibrahim & Stuart R. Lipsitz, 2002. "Frailty Models with Missing Covariates," Biometrics, The International Biometric Society, vol. 58(1), pages 98-109, March.
    16. Satyanshu Kumar Upadhyay & Iftikhar Ahmed Javed & Meena Peshwani, 2004. "Bayesian analysis of generalized four-parameter Burr distribution via Gibbs sampler," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 115-135.
    17. Chibuzor Christopher Nnanatu & Glory Atilola & Paul Komba & Lubanzadio Mavatikua & Zhuzhi Moore & Dennis Matanda & Otibho Obianwu & Ngianga-Bakwin Kandala, 2021. "Evaluating changes in the prevalence of female genital mutilation/cutting among 0-14 years old girls in Nigeria using data from multiple surveys: A novel Bayesian hierarchical spatio-temporal model," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-31, February.
    18. Jason R. W. Merrick, 2008. "Getting the Right Mix of Experts," Decision Analysis, INFORMS, vol. 5(1), pages 43-52, March.
    19. Naijun Sha & Rong Pan, 2014. "Bayesian analysis for step-stress accelerated life testing using weibull proportional hazard model," Statistical Papers, Springer, vol. 55(3), pages 715-726, August.
    20. Kim Jin Gyo & Menzefricke Ulrich & Feinberg Fred M., 2004. "Assessing Heterogeneity in Discrete Choice Models Using a Dirichlet Process Prior," Review of Marketing Science, De Gruyter, vol. 2(1), pages 1-41, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:13:y:2022:i:2:d:10.1007_s13198-021-01343-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.