IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v13y2022i1d10.1007_s13198-021-01469-1.html
   My bibliography  Save this article

Research on algorithms for control design of human–machine interface system using ML

Author

Listed:
  • Xin Zhang

    (Zibo Vocational Institute)

  • Shehab Mohamed Beram

    (Sunway University Kuala Lumpur)

  • Mohd Anul Haq

    (Majmaah University)

  • Surindar Gopalrao Wawale

    (Agasti Arts, Commerce and Dadasaheb Rupwate Science College)

  • Ahmed Mateen Buttar

    (University of Agriculture Faisalabad)

Abstract

In recent years, progressive attention has been paid to the research of man–machine interface. In many fields of application software system development, experts have listed man–machine interface as one of the commands for the urgent research and advancement. This article has proposed the improvement to the man–machine interface system control design for the practical value of life, and has presented an approach for algorithms using Machine Learning. The method used in the paper includes the spatial layout of human–machine interface supported by the design cognition model and the use of Machine Learning algorithms. Based on Max–Min Ant System, the optimal path of ant construction is obtained, which is the optimal layout scheme. The experimental result in the paper shows that: with the support of the cognitive model, the cabin man–machine interface system control design method based on Genetic Algorithm-Ants Algorithm is obtained. The layout design principles were summarized by the cognitive model, and the layout optimization objective function was constructed according to each principle, and the problem of solving layout parties and cases was transformed into a combinatorial optimization problem. The form of fitness function, pheromone, and heuristic information for layout optimization was studied, and the algorithm of manual optimization process was implemented based on Genetic Algorithm and Ant Algorithm, in order to obtain a good optimization performance and time performance as a result. The practical value of the control design of man–machine interface system with the Machine Learning algorithm is proved.

Suggested Citation

  • Xin Zhang & Shehab Mohamed Beram & Mohd Anul Haq & Surindar Gopalrao Wawale & Ahmed Mateen Buttar, 2022. "Research on algorithms for control design of human–machine interface system using ML," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 462-469, March.
  • Handle: RePEc:spr:ijsaem:v:13:y:2022:i:1:d:10.1007_s13198-021-01469-1
    DOI: 10.1007/s13198-021-01469-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-021-01469-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-021-01469-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Donghai Wang & Qiuhong Zhao, 2020. "A Simultaneous Optimization Model for Airport Network Slot Allocation under Uncertain Capacity," Sustainability, MDPI, vol. 12(14), pages 1-14, July.
    2. Shan Lan & John-Paul Clarke & Cynthia Barnhart, 2006. "Planning for Robust Airline Operations: Optimizing Aircraft Routings and Flight Departure Times to Minimize Passenger Disruptions," Transportation Science, INFORMS, vol. 40(1), pages 15-28, February.
    3. Khaled, Oumaima & Minoux, Michel & Mousseau, Vincent & Michel, Stéphane & Ceugniet, Xavier, 2018. "A multi-criteria repair/recovery framework for the tail assignment problem in airlines," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 137-151.
    4. Irawan, Chandra Ade & Jones, Dylan & Hofman, Peter S. & Zhang, Lina, 2023. "Integrated strategic energy mix and energy generation planning with multiple sustainability criteria and hierarchical stakeholders," European Journal of Operational Research, Elsevier, vol. 308(2), pages 864-883.
    5. Hashem Omrani & Farzane Adabi & Narges Adabi, 2017. "Designing an efficient supply chain network with uncertain data: a robust optimization—data envelopment analysis approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(7), pages 816-828, July.
    6. Jihee Han & KwangSup Shin, 2016. "Evaluation mechanism for structural robustness of supply chain considering disruption propagation," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 135-151, January.
    7. Tsai, Jung-Fa, 2007. "An optimization approach for supply chain management models with quantity discount policy," European Journal of Operational Research, Elsevier, vol. 177(2), pages 982-994, March.
    8. Xuejie Bai & Yankui Liu, 2016. "Robust optimization of supply chain network design in fuzzy decision system," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1131-1149, December.
    9. Schönlein, Michael & Makuschewitz, Thomas & Wirth, Fabian & Scholz-Reiter, Bernd, 2013. "Measurement and optimization of robust stability of multiclass queueing networks: Applications in dynamic supply chains," European Journal of Operational Research, Elsevier, vol. 229(1), pages 179-189.
    10. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    11. Sebastian Rachuba & Brigitte Werners, 2017. "A fuzzy multi-criteria approach for robust operating room schedules," Annals of Operations Research, Springer, vol. 251(1), pages 325-350, April.
    12. Roy, Bernard, 2010. "Robustness in operational research and decision aiding: A multi-faceted issue," European Journal of Operational Research, Elsevier, vol. 200(3), pages 629-638, February.
    13. Boddiford, Ashley N. & Kaufman, Daniel E. & Skipper, Daphne E. & Uhan, Nelson A., 2023. "Approximating a linear multiplicative objective in watershed management optimization," European Journal of Operational Research, Elsevier, vol. 305(2), pages 547-561.
    14. Kumar Muthuraman & Tarik Aouam & Ronald Rardin, 2008. "Regulation of Natural Gas Distribution Using Policy Benchmarks," Operations Research, INFORMS, vol. 56(5), pages 1131-1145, October.
    15. Alem, Douglas & Clark, Alistair & Moreno, Alfredo, 2016. "Stochastic network models for logistics planning in disaster relief," European Journal of Operational Research, Elsevier, vol. 255(1), pages 187-206.
    16. Hanks, Robert W. & Weir, Jeffery D. & Lunday, Brian J., 2017. "Robust goal programming using different robustness echelons via norm-based and ellipsoidal uncertainty sets," European Journal of Operational Research, Elsevier, vol. 262(2), pages 636-646.
    17. Donya Rahmani, 2019. "Designing a robust and dynamic network for the emergency blood supply chain with the risk of disruptions," Annals of Operations Research, Springer, vol. 283(1), pages 613-641, December.
    18. McAleer, M.J. & Jiménez-Martín, J.A. & Pérez-Amaral, T., 2008. "A decision rule to minimize daily capital charges in forecasting value-at-risk," Econometric Institute Research Papers EI 2008-34, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    19. McKenna, Claire & Chalabi, Zaid & Epstein, David & Claxton, Karl, 2010. "Budgetary policies and available actions: A generalisation of decision rules for allocation and research decisions," Journal of Health Economics, Elsevier, vol. 29(1), pages 170-181, January.
    20. Soudabeh Seyyedi Ghomi & Fahimeh Baroughi, 2024. "Robust vertex centdian facility location problem on tree networks," Annals of Operations Research, Springer, vol. 341(2), pages 1135-1149, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:13:y:2022:i:1:d:10.1007_s13198-021-01469-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.