IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v13y2022i1d10.1007_s13198-021-01248-y.html
   My bibliography  Save this article

A novel component mixing and mixed redundancy strategy for reliability optimization

Author

Listed:
  • Saeideh Sheikhpour

    (Shahid Bahonar University of Kerman)

  • Amin Kargar-Barzi

    (Shahid Bahonar University of Kerman)

  • Ali Mahani

    (Shahid Bahonar University of Kerman)

Abstract

Maximizing overall system reliability by identifying optimal system configuration considering several design constraints is known as reliability redundancy allocation problem (RRAP). Since reliability is an important quality attribute in critical systems, RRAP has been intensively investigated in the literature. In this paper, a new model of RRAP for heterogeneous and homogeneous components is developed. Our proposed model handles component mixing in subsystems under both active and cold-standby redundancy strategies. The problem, therefore, is to decide the number of components in each subsystem (redundancy level), the failure rate of selected components, and the type of redundancy strategy for each of them under multiple design constraints including system weight, cost, and volume. Since RRAP falls into the NP-hard category of engineering optimization problems, a teaching learning-based optimization (TLBO) algorithm is implemented to solve it. Finally, the simulation results of the proposed RRAP model by TLBO on three well-known benchmark problems are provided, followed by the comparisons with recent existing related works. The comparative results suggested the effectiveness of the proposed approach in finding the optimal system configuration with higher system reliability in all cases.

Suggested Citation

  • Saeideh Sheikhpour & Amin Kargar-Barzi & Ali Mahani, 2022. "A novel component mixing and mixed redundancy strategy for reliability optimization," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 328-346, February.
  • Handle: RePEc:spr:ijsaem:v:13:y:2022:i:1:d:10.1007_s13198-021-01248-y
    DOI: 10.1007/s13198-021-01248-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-021-01248-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-021-01248-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Heungseob & Kim, Pansoo, 2017. "Reliability models for a nonrepairable system with heterogeneous components having a phase-type time-to-failure distribution," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 37-46.
    2. Abouei Ardakan, Mostafa & Zeinal Hamadani, Ali, 2014. "Reliability optimization of series–parallel systems with mixed redundancy strategy in subsystems," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 132-139.
    3. Gholinezhad, Hadi & Zeinal Hamadani, Ali, 2017. "A new model for the redundancy allocation problem with component mixing and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 66-73.
    4. Ouyang, Zhiyuan & Liu, Yu & Ruan, Sheng-Jia & Jiang, Tao, 2019. "An improved particle swarm optimization algorithm for reliability-redundancy allocation problem with mixed redundancy strategy and heterogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 62-74.
    5. Huang, Chia-Ling, 2015. "A particle-based simplified swarm optimization algorithm for reliability redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 221-230.
    6. Mostafa Abouei Ardakan & Mohammad Sima & Ali Zeinal Hamadani & David W. Coit, 2016. "A novel strategy for redundant components in reliability--redundancy allocation problems," IISE Transactions, Taylor & Francis Journals, vol. 48(11), pages 1043-1057, November.
    7. Kim, Heungseob & Kim, Pansoo, 2017. "Reliability–redundancy allocation problem considering optimal redundancy strategy using parallel genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 153-160.
    8. Dolatshahi-Zand, Ali & Khalili-Damghani, Kaveh, 2015. "Design of SCADA water resource management control center by a bi-objective redundancy allocation problem and particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 11-21.
    9. Abouei Ardakan, Mostafa & Rezvan, Mohammad Taghi, 2018. "Multi-objective optimization of reliability–redundancy allocation problem with cold-standby strategy using NSGA-II," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 225-238.
    10. Dobani, Ehsan Ramezani & Ardakan, Mostafa Abouei & Davari-Ardakani, Hamed & Juybari, Mohammad N., 2019. "RRAP-CM: A new reliability-redundancy allocation problem with heterogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    11. Gianpaolo Di Bona & Antonio Forcina & Domenico Falcone & Luca Silvestri, 2020. "Critical Risks Method (CRM): A New Safety Allocation Approach for a Critical Infrastructure," Sustainability, MDPI, vol. 12(12), pages 1-19, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juybari, Mohammad N. & Hamadani, Ali Zeinal & Ardakan, Mostafa Abouei, 2023. "Availability analysis and cost optimization of a repairable system with a mix of active and warm-standby components in a shock environment," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    2. Hsieh, Tsung-Jung, 2023. "A Q-learning guided search for developing a hybrid of mixed redundancy strategies to improve system reliability," Reliability Engineering and System Safety, Elsevier, vol. 236(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wei & Lin, Mingqiang & Fu, Yongnian & Luo, Xiaoping & Chen, Hanghang, 2020. "Multi-objective optimization of reliability-redundancy allocation problem for multi-type production systems considering redundancy strategies," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    2. Dobani, Ehsan Ramezani & Ardakan, Mostafa Abouei & Davari-Ardakani, Hamed & Juybari, Mohammad N., 2019. "RRAP-CM: A new reliability-redundancy allocation problem with heterogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    3. Hsieh, Tsung-Jung, 2021. "Component mixing with a cold standby strategy for the redundancy allocation problem," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    4. Gholinezhad, Hadi, 2024. "A new model for reliability redundancy allocation problem with component mixing," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    5. Ouyang, Zhiyuan & Liu, Yu & Ruan, Sheng-Jia & Jiang, Tao, 2019. "An improved particle swarm optimization algorithm for reliability-redundancy allocation problem with mixed redundancy strategy and heterogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 62-74.
    6. Guilani, Pardis Pourkarim & Juybari, Mohammad N. & Ardakan, Mostafa Abouei & Kim, Heungseob, 2020. "Sequence optimization in reliability problems with a mixed strategy and heterogeneous backup scheme," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    7. Hsieh, Tsung-Jung, 2023. "A Q-learning guided search for developing a hybrid of mixed redundancy strategies to improve system reliability," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    8. Muhuri, Pranab K. & Nath, Rahul, 2019. "A novel evolutionary algorithmic solution approach for bilevel reliability-redundancy allocation problem," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    9. Guilani, Pardis Pourkarim & Ardakan, Mostafa Abouei & Dobani, Ehsan Ramezani, 2022. "Optimal component sequence in heterogeneous 1-out-of-N mixed RRAPs," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    10. Zaretalab, Arash & Sharifi, Mani & Guilani, Pedram Pourkarim & Taghipour, Sharareh & Niaki, Seyed Taghi Akhavan, 2022. "A multi-objective model for optimizing the redundancy allocation, component supplier selection, and reliable activities for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    11. Li, Shuai & Chi, Xuefen & Yu, Baozhu, 2022. "An improved particle swarm optimization algorithm for the reliability–redundancy allocation problem with global reliability," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    12. Soheil Azizi & Milad Mohammadi, 2023. "Strategy selection for multi-objective redundancy allocation problem in a k-out-of-n system considering the mean time to failure," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 1021-1044, June.
    13. Nath, Rahul & Muhuri, Pranab K., 2022. "Evolutionary Optimization based Solution approaches for Many Objective Reliability-Redundancy Allocation Problem," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    14. Zhang, Hanxiao & Sun, Muxia & Li, Yan-Fu, 2022. "Reliability–redundancy allocation problem in multi-state flow network: Minimal cut-based approximation scheme," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    15. Zhang, Jinchun & Lv, Hang & Hou, Jinxiu, 2023. "A novel general model for RAP and RRAP optimization of k-out-of-n:G systems with mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    16. Peiravi, Abdossaber & Nourelfath, Mustapha & Zanjani, Masoumeh Kazemi, 2022. "Redundancy strategies assessment and optimization of k-out-of-n systems based on Markov chains and genetic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    17. Liu, Baoliang & Wen, Yanqing & Qiu, Qingan & Shi, Haiyan & Chen, Jianhui, 2022. "Reliability analysis for multi-state systems under K-mixed redundancy strategy considering switching failure," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    18. Peiravi, Abdossaber & Ardakan, Mostafa Abouei & Zio, Enrico, 2020. "A new Markov-based model for reliability optimization problems with mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    19. Chowdury, Md. Abdul Malek & Nath, Rahul & Shukla, Amit K. & Rauniyar, Amit & Muhuri, Pranab K., 2024. "Multi-task optimization in reliability redundancy allocation problem: A multifactorial evolutionary-based approach," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    20. Ardakan, Mostafa Abouei & Talkhabi, Sajjad & Juybari, Mohammad N., 2022. "Optimal activation order vs. redundancy strategies in reliability optimization problems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:13:y:2022:i:1:d:10.1007_s13198-021-01248-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.