IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v13y2022i1d10.1007_s13198-021-01137-4.html
   My bibliography  Save this article

FGP approach and Rouben ranking function to bi-level multi-objective quadratic fractional problem with trapezoidal fuzzy numbers and soft fuzzy constraints

Author

Listed:
  • Namrata Rani

    (Maharishi Markandeshwar (Deemed to be University))

  • Vandana Goyal

    (Maharishi Markandeshwar (Deemed to be University))

  • Deepak Gupta

    (Maharishi Markandeshwar (Deemed to be University))

Abstract

The requirement of the consistent solution of Bi-level Multi-objective Quadratic Fractional Problem(BLMOQFP) provides the avenue for this research through Fuzzy Goal Programming(FGP) approach. The present study offers to tackle the problems which may have some objectives with infeasible points. Due to having a non-optimal solution of some objective functions, the process becomes complicated to arrive at the solution. This study reveals the way to obtain a consistent solution in such cases. This article disentangles the problem of having Trapezoidal Fuzzy Numbers as coefficients and implements Rouben Ranking Function to transform a fuzzy problem into a crisp one. After that, a new methodology is introduced to convert fractional objectives into non-fractional form. In the last stage, FGP approach is being used to form a single model with linear and simple objective corresponding to initial BLMOQF problem. Present Study deals with soft constraints in the way that Feasible region is also relaxed up to a limit for the betterment of the solution. Soft constraints are transformed into fuzzy goals by defining corresponding membership functions using leniency limits provided by decision-makers. Furthermore, an algorithm and flowchart are also presented to clarify the proposed approach. In addition, a numerical in which most of the objective functions have an infeasible solution is also tested.

Suggested Citation

  • Namrata Rani & Vandana Goyal & Deepak Gupta, 2022. "FGP approach and Rouben ranking function to bi-level multi-objective quadratic fractional problem with trapezoidal fuzzy numbers and soft fuzzy constraints," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 113-122, February.
  • Handle: RePEc:spr:ijsaem:v:13:y:2022:i:1:d:10.1007_s13198-021-01137-4
    DOI: 10.1007/s13198-021-01137-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-021-01137-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-021-01137-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. HATAMI-MARBINI, Adel & SAATI, S. & TAVANA, M. & HAJIAKHONDI, E., 2015. "A Fuzzy Linear Programming Model with Fuzzy Parameters and Decision Variables," LIDAM Reprints CORE 2723, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Savita Mishra & Ajit Ghosh, 2006. "Interactive fuzzy programming approach to Bi-level quadratic fractional programming problems," Annals of Operations Research, Springer, vol. 143(1), pages 251-263, March.
    3. Ishibuchi, Hisao & Tanaka, Hideo, 1990. "Multiobjective programming in optimization of the interval objective function," European Journal of Operational Research, Elsevier, vol. 48(2), pages 219-225, September.
    4. P. Senthil Kumar, 2020. "Algorithms for solving the optimization problems using fuzzy and intuitionistic fuzzy set," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(1), pages 189-222, February.
    5. Anuj Kumar & Sangeeta Pant & Mangey Ram & Shshank Chaube, 2019. "Multi-objective grey wolf optimizer approach to the reliability-cost optimization of life support system in space capsule," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(2), pages 276-284, April.
    6. Saber Saati & Madjid Tavana & Adel Hatami-Marbini & Elham Hajiakhondi, 2015. "A fuzzy linear programming model with fuzzy parameters and decision variables," International Journal of Information and Decision Sciences, Inderscience Enterprises Ltd, vol. 7(4), pages 312-333.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Namrata Rani & Vandana Goyal & Deepak Gupta, 2021. "A solution procedure for multi-objective fully quadratic fractional optimization model," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(6), pages 1447-1458, December.
    2. Diptiranjan Behera, 2024. "Solving epistemic uncertainty based optimization problem with crisp coefficients," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(6), pages 2130-2140, June.
    3. Wang, Ying-Ming & Elhag, Taha M.S., 2007. "A goal programming method for obtaining interval weights from an interval comparison matrix," European Journal of Operational Research, Elsevier, vol. 177(1), pages 458-471, February.
    4. Majumdar, J. & Bhunia, A.K., 2007. "Elitist genetic algorithm for assignment problem with imprecise goal," European Journal of Operational Research, Elsevier, vol. 177(2), pages 684-692, March.
    5. Li Cheng & Liu Conglin, 2023. "Game analysis and pricing strategy of duopoly airlines based on service," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(3), pages 1103-1124, June.
    6. Yunchol Jong, 2012. "Optimization Method for Interval Portfolio Selection Based on Satisfaction Index of Interval inequality Relation," Papers 1207.1932, arXiv.org.
    7. Subhendu Ruidas & Mijanur Rahaman Seikh & Prasun Kumar Nayak, 2020. "An EPQ model with stock and selling price dependent demand and variable production rate in interval environment," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 385-399, April.
    8. Wei Wang & Yaofeng Xu & Liguo Hou, 2019. "Optimal allocation of test times for reliability growth testing with interval-valued model parameters," Journal of Risk and Reliability, , vol. 233(5), pages 791-802, October.
    9. Xiaobin Yang & Haitao Lin & Gang Xiao & Huanbin Xue & Xiaopeng Yang, 2019. "Resolution of Max-Product Fuzzy Relation Equation with Interval-Valued Parameter," Complexity, Hindawi, vol. 2019, pages 1-16, February.
    10. P. Senthil Kumar, 2019. "PSK Method for Solving Mixed and Type-4 Intuitionistic Fuzzy Solid Transportation Problems," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 10(2), pages 20-53, April.
    11. Jiang, C. & Han, X. & Liu, G.R. & Liu, G.P., 2008. "A nonlinear interval number programming method for uncertain optimization problems," European Journal of Operational Research, Elsevier, vol. 188(1), pages 1-13, July.
    12. Rong, M. & Mahapatra, N.K. & Maiti, M., 2008. "A two warehouse inventory model for a deteriorating item with partially/fully backlogged shortage and fuzzy lead time," European Journal of Operational Research, Elsevier, vol. 189(1), pages 59-75, August.
    13. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
    14. Xu, Zeshui & Chen, Jian, 2008. "Some models for deriving the priority weights from interval fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 184(1), pages 266-280, January.
    15. Fabiola Roxana Villanueva & Valeriano Antunes Oliveira, 2022. "Necessary Optimality Conditions for Interval Optimization Problems with Functional and Abstract Constraints," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 896-923, September.
    16. Mrinal Jana & Geetanjali Panda, 2018. "$$\chi$$ χ -Optimal solution of single objective nonlinear optimization problem with uncertain parameters," OPSEARCH, Springer;Operational Research Society of India, vol. 55(1), pages 165-186, March.
    17. Namrata Rani & Vandana Goyal & Deepak Gupta, 2024. "A modified fuzzy goal programming procedure to solve fully quadratic fractional optimization model," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(11), pages 5167-5181, November.
    18. P. Kumar & G. Panda, 2017. "Solving nonlinear interval optimization problem using stochastic programming technique," OPSEARCH, Springer;Operational Research Society of India, vol. 54(4), pages 752-765, December.
    19. Sujit De & Shib Sana, 2015. "Backlogging EOQ model for promotional effort and selling price sensitive demand- an intuitionistic fuzzy approach," Annals of Operations Research, Springer, vol. 233(1), pages 57-76, October.
    20. Wu, Hsien-Chung, 2009. "The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions," European Journal of Operational Research, Elsevier, vol. 196(1), pages 49-60, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:13:y:2022:i:1:d:10.1007_s13198-021-01137-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.