IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v12y2021i4d10.1007_s13198-021-01139-2.html
   My bibliography  Save this article

Optimization of FP-Growth algorithm based on cloud computing and computer big data

Author

Listed:
  • Baohua Zhang

    (Changzhou Vocational Institute of Engineering)

Abstract

The rapid development of cloud computing technology has spawned many excellent cloud computing platforms. These cloud computing platforms provide an effective solution for the processing of big data, which can be used as the basis for the study of parallel mining algorithms and the application of algorithms. This article uses the FP-Growth algorithm to mine and analyze computer big data. Aiming at the low extraction efficiency of traditional FP-Growth algorithm in large-scale data environment, an improved FP-Growth algorithm is proposed. In addition, in view of the shortcomings of frequent lists of L elements that are often cross-referenced in the FP-tree construction process, an improved algorithm based on hash tables is proposed, which realizes the storage address processing element name key, and then realizes the element name key to storage numbered mapping. This article mainly introduces the optimization of FP-Growth algorithm under the background of cloud computing and computer big data. The experimental results in this paper show that the performance of the improved FP-gtowth algorithm is better than the original algorithm, the traversal time is reduced by 13%, and the mining efficiency is increased by 25%. In addition, the use of this algorithm for data clustering reduces the error rate and optimizes performance becomes better and has better application value.

Suggested Citation

  • Baohua Zhang, 2021. "Optimization of FP-Growth algorithm based on cloud computing and computer big data," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(4), pages 853-863, August.
  • Handle: RePEc:spr:ijsaem:v:12:y:2021:i:4:d:10.1007_s13198-021-01139-2
    DOI: 10.1007/s13198-021-01139-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-021-01139-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-021-01139-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Han & Zhao, Yu & Ma, Xiaobing & Wang, Hongyu, 2017. "Optimal design of constant-stress accelerated degradation tests using the M-optimality criterion," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 45-54.
    2. Janssen, Marijn & van der Voort, Haiko & Wahyudi, Agung, 2017. "Factors influencing big data decision-making quality," Journal of Business Research, Elsevier, vol. 70(C), pages 338-345.
    3. Omar Al-Hujran & Enas M. Al-Lozi & Mutaz M. Al-Debei & Mahmoud Maqableh, 2018. "Challenges of Cloud Computing Adoption From the TOE Framework Perspective," International Journal of E-Business Research (IJEBR), IGI Global, vol. 14(3), pages 77-94, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Ali Yamin, 2021. "Investigating the Drivers of Supply Chain Resilience in the Wake of the COVID-19 Pandemic: Empirical Evidence from an Emerging Economy," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
    2. Klein, Daniel & Ludwig, Christopher A. & Nicolay, Katharina, 2020. "Internal digitalization and tax-efficient decision making," ZEW Discussion Papers 20-051, ZEW - Leibniz Centre for European Economic Research.
    3. Ajoy Ketan Sarangi & Rudra Prakash Pradhan, 2020. "ICT infrastructure and economic growth: a critical assessment and some policy implications," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 47(4), pages 363-383, December.
    4. Morimura, Fumikazu & Sakagawa, Yuji, 2023. "The intermediating role of big data analytics capability between responsive and proactive market orientations and firm performance in the retail industry," Journal of Retailing and Consumer Services, Elsevier, vol. 71(C).
    5. Di Caprio, Debora & Santos-Arteaga, Francisco J. & Tavana, Madjid, 2019. "The role of anticipated emotions and the value of information in determining sequential search incentives," Operations Research Perspectives, Elsevier, vol. 6(C).
    6. Roel Heijlen & Joep Crompvoets & Geert Bouckaert & Maxim Chantillon, 2018. "Evolving Government Information Processes for Service Delivery: Identifying Types & Impact," Administrative Sciences, MDPI, vol. 8(2), pages 1-14, May.
    7. Maria Vincenza Ciasullo & Raffaella Montera & Emilia Romeo, 2023. "What about Data-Driven Business Models? Mapping the Literature and Scoping Future Avenues," International Journal of Business and Management, Canadian Center of Science and Education, vol. 16(8), pages 1-1, February.
    8. Nguyen Anh Khoa Dam & Thang Le Dinh & William Menvielle, 2019. "A systematic literature review of big data adoption in internationalization," Journal of Marketing Analytics, Palgrave Macmillan, vol. 7(3), pages 182-195, September.
    9. Cheng, Yao & Liao, Haitao & Huang, Zhiyi, 2021. "Optimal degradation-based hybrid double-stage acceptance sampling plan for a heterogeneous product," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    10. Brinch, Morten & Gunasekaran, Angappa & Fosso Wamba, Samuel, 2021. "Firm-level capabilities towards big data value creation," Journal of Business Research, Elsevier, vol. 131(C), pages 539-548.
    11. Liedong, Tahiru Azaaviele & Rajwani, Tazeeb & Lawton, Thomas C., 2020. "Information and nonmarket strategy: Conceptualizing the interrelationship between big data and corporate political activity," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    12. Ma, Zhonghai & Liao, Haitao & Ji, Hui & Wang, Shaoping & Yin, Fanglong & Nie, Songlin, 2021. "Optimal design of hybrid accelerated test based on the Inverse Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    13. Tino T. Herden, 2020. "Explaining the competitive advantage generated from Analytics with the knowledge-based view: the example of Logistics and Supply Chain Management," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 163-214, April.
    14. Jordan Vazquez & Cécile Godé & Jean-Fabrice Lebraty, 2021. "Environnement big data et prise de décision : maintien de l'ordre durant un évènement sportif d'ampleur," Post-Print hal-03252399, HAL.
    15. Huynh, Minh-Tay & Nippa, Michael & Aichner, Thomas, 2023. "Big data analytics capabilities: Patchwork or progress? A systematic review of the status quo and implications for future research," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    16. Ágnes Szukits, 2022. "The illusion of data-driven decision making – The mediating effect of digital orientation and controllers’ added value in explaining organizational implications of advanced analytics," Journal of Management Control: Zeitschrift für Planung und Unternehmenssteuerung, Springer, vol. 33(3), pages 403-446, September.
    17. Kristoffersen, Eivind & Mikalef, Patrick & Blomsma, Fenna & Li, Jingyue, 2021. "Towards a business analytics capability for the circular economy," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    18. George Bouchagiar, 2019. "The Long Road Toward Tracking the Trackers and De-biasing: A Consensus on Shaking the Black Box and Freeing From Bias," Review of European Studies, Canadian Center of Science and Education, vol. 11(1), pages 1-27, December.
    19. Shengkun Xie & Rebecca Luo, 2022. "Measuring Variable Importance in Generalized Linear Models for Modeling Size of Loss Distributions," Mathematics, MDPI, vol. 10(10), pages 1-19, May.
    20. Youssef, Mayada Abd El-Aziz & Eid, Riyad & Agag, Gomaa, 2022. "Cross-national differences in big data analytics adoption in the retail industry," Journal of Retailing and Consumer Services, Elsevier, vol. 64(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:12:y:2021:i:4:d:10.1007_s13198-021-01139-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.