IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v11y2020i5d10.1007_s13198-020-01032-4.html
   My bibliography  Save this article

A comparative risk assessment of dialysis care processes in the home and hospital care contexts

Author

Listed:
  • Peter Chemweno

    (University of Twente)

  • Liliane Pintelon

    (KU Leuven)

Abstract

Dialysis processes within the home care context is associated with risk factors which are not very prominent in the hospital context. This includes risk factors such as unanticipated device malfunction, or erroneous operation of the equipment, which exposes the patient to injury while undergoing dialysis. Importantly, the mentioned risk factors are further attributed to technical aspects such as sub-optimal equipment maintenance or following improper clinical procedures when administering care to the patient. Hence, it is important to follow a methodological approach to identify and assess hazards embedded within the dialysis treatment process, and on this basis, formulate effective strategies to mitigate their negative consequences on patient safety. This paper presents a comparative risk assessment for in-hospital versus in-home dialysis care. For the two cases, the risk assessment considers expertise of care givers involved in administering dialysis. The findings show that performing risk assessment for hospital environment, is more structured owing to expertise of clinicians and care givers responsible for administering dialysis. However, assessing risks for the home-care environment is more challenging owing to absence of domain knowledge, hence a survey approach to structure the risk assessment process is necessary. Moreover, risks in the home care context is influenced by logistical aspects, and lack of domain knowledge for maintaining dialysis equipment. Overall, insights from the comparative studies yields important learning points expected to improve dialysis care as more healthcare providers transfer care to the home environment.

Suggested Citation

  • Peter Chemweno & Liliane Pintelon, 2020. "A comparative risk assessment of dialysis care processes in the home and hospital care contexts," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(5), pages 985-1002, October.
  • Handle: RePEc:spr:ijsaem:v:11:y:2020:i:5:d:10.1007_s13198-020-01032-4
    DOI: 10.1007/s13198-020-01032-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-020-01032-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-020-01032-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abrahamsen, Håkon Bjorheim & Abrahamsen, Eirik Bjorheim & Høyland, Sindre, 2016. "On the need for revising healthcare failure mode and effect analysis for assessing potential for patient harm in healthcare processes," Reliability Engineering and System Safety, Elsevier, vol. 155(C), pages 160-168.
    2. Stephen Vala & Peter Chemweno & Liliane Pintelon & Peter Muchiri, 2018. "A risk-based maintenance approach for critical care medical devices: a case study application for a large hospital in a developing country," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(5), pages 1217-1233, October.
    3. Grout, John R. & Toussaint, John S., 2010. "Mistake-proofing healthcare: Why stopping processes may be a good start," Business Horizons, Elsevier, vol. 53(2), pages 149-156, March.
    4. Daniel A. Asamoah & Ramesh Sharda & Howard N. Rude & Derek Doran, 2018. "RFID-based information visibility for hospital operations: exploring its positive effects using discrete event simulation," Health Care Management Science, Springer, vol. 21(3), pages 305-316, September.
    5. Chemweno, Peter & Pintelon, Liliane & Muchiri, Peter Nganga & Van Horenbeek, Adriaan, 2018. "Risk assessment methodologies in maintenance decision making: A review of dependability modelling approaches," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 64-77.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faiella, Giuliana & Parand, Anam & Franklin, Bryony Dean & Chana, Prem & Cesarelli, Mario & Stanton, Neville A. & Sevdalis, Nick, 2018. "Expanding healthcare failure mode and effect analysis: A composite proactive risk analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 117-126.
    2. Liming Mu & Yingzhi Zhang & Qiyan Zhang, 2023. "Risk Evaluation Method Based on Fault Propagation and Diffusion," Mathematics, MDPI, vol. 11(19), pages 1-16, September.
    3. Yuegang Song & Ruibing Wu, 2022. "The Impact of Financial Enterprises’ Excessive Financialization Risk Assessment for Risk Control based on Data Mining and Machine Learning," Computational Economics, Springer;Society for Computational Economics, vol. 60(4), pages 1245-1267, December.
    4. Xinyu Yao & Karmel S. Shehadeh & Rema Padman, 2024. "Multi-resource allocation and care sequence assignment in patient management: a stochastic programming approach," Health Care Management Science, Springer, vol. 27(3), pages 352-369, September.
    5. Hernandez-Perdomo, Elvis & Guney, Yilmaz & Rocco, Claudio M., 2019. "A reliability model for assessing corporate governance using machine learning techniques," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 220-231.
    6. J. Wakiru & P. N. Muchiri & L. Pintelon & P. Chemweno, 2019. "A cost-based failure prioritization approach for selecting maintenance strategies for thermal power plants: a case study context of developing countries," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1369-1387, October.
    7. Hamzeh Soltanali & Mehdi Khojastehpour & José Torres Farinha & José Edmundo de Almeida e Pais, 2021. "An Integrated Fuzzy Fault Tree Model with Bayesian Network-Based Maintenance Optimization of Complex Equipment in Automotive Manufacturing," Energies, MDPI, vol. 14(22), pages 1-21, November.
    8. Tsoumpris, Charalampos & Theotokatos, Gerasimos, 2023. "A decision-making approach for the health-aware energy management of ship hybrid power plants," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    9. Zhen Wang & Rongxi Wang & Wei Deng & Yong Zhao, 2022. "An Integrated Approach-Based FMECA for Risk Assessment: Application to Offshore Wind Turbine Pitch System," Energies, MDPI, vol. 15(5), pages 1-25, March.
    10. Karar, Ahmed Noaman & Labib, Ashraf & Jones, Dylan, 2023. "Post-warranty maintenance strategy selection using shape packages process," International Journal of Production Economics, Elsevier, vol. 255(C).
    11. Lee, Juseong & Mitici, Mihaela, 2020. "An integrated assessment of safety and efficiency of aircraft maintenance strategies using agent-based modelling and stochastic Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    12. Huang, Jia & Li, Zhaojun(Steven) & Liu, Hu-Chen, 2017. "New approach for failure mode and effect analysis using linguistic distribution assessments and TODIM method," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 302-309.
    13. Liu, Gehui & Chen, Shaokuan & Jin, Hua & Liu, Shuang, 2021. "Optimum opportunistic maintenance schedule incorporating delay time theory with imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    14. Liu, Jintao & Schmid, Felix & Zheng, Wei & Zhu, Jiebei, 2019. "Understanding railway operational accidents using network theory," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 218-231.
    15. Thanh-Lam Nguyen & Ming-Hung Shu & Bi-Min Hsu, 2016. "Extended FMEA for Sustainable Manufacturing: An Empirical Study in the Non-Woven Fabrics Industry," Sustainability, MDPI, vol. 8(9), pages 1-14, September.
    16. Mena, R. & Viveros, P. & Zio, E. & Campos, S., 2021. "An optimization framework for opportunistic planning of preventive maintenance activities," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    17. Yutong Song & Yong Deng, 2019. "A new method to measure the divergence in evidential sensor data fusion," International Journal of Distributed Sensor Networks, , vol. 15(4), pages 15501477198, April.
    18. Alexander Brem & Dominic T. J. O’Sullivan & Ken Bruton, 2021. "Advancing the Industrial Sectors Participation in Demand Response within National Electricity Grids," Energies, MDPI, vol. 14(24), pages 1-26, December.
    19. Pareeyawadee Ponanake & Manat Pithuncharurnlap & Woranat Sangmanee, 2014. "Creating Hospitals’ Core Competencies with Lean Healthcare Strategies Entering the ASEAN Economic Community," Journal of Economics and Behavioral Studies, AMH International, vol. 6(9), pages 700-708.
    20. Rodrigo E. Peimbert-García & Tapani Jorma & Leopoldo Eduardo Cárdenas-Barrón & Samuel M. Nucamendi-Guillén & Heriberto García-Reyes, 2021. "Linking Lean Adoption and Implementation in Healthcare to National Cultures," Sustainability, MDPI, vol. 13(16), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:11:y:2020:i:5:d:10.1007_s13198-020-01032-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.