IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v33y2024i6d10.1007_s10726-024-09896-8.html
   My bibliography  Save this article

Game Model of Stable Cooperation During Resource Distribution in Self-Organized Emergency Management System

Author

Listed:
  • Jun Su

    (Xi’an University of Science and Technology)

  • Yilin Chen

    (Xi’an University of Science and Technology
    Xiangnan University)

  • Dongyu Zhang

    (Xi’an University of Science and Technology)

Abstract

In the short term after an emergency, the relief resources require some workers to distribute to various delivery sites through a self-organized cooperation. How to achieve a stable cooperation is an important issue of the self-organized resource distribution in emergency. This paper proposes a potential game theoretic formulation for the stable cooperation during resource distribution in Self-organized Emergency Management System (SEMS). In the potential game distribution model, the private utility function of each worker is defined based on the Aumann-Drèze value, which makes sure of the existence of Nash equilibrium and permutable equilibrium solutions in resource distribution. Then, we prove the non-decreasing and submodularity of the social utility function, ensuring that any Nash equilibrium is guaranteed at least 50% of suboptimality, and the best Nash equilibrium is the optimal solution. In this way, the optimal distribution scheme is transformed into the solution of Nash equilibrium, and the consistent control of individual rationality (maximizing the private utility) and system objective (maximizing the social utility) is realized. We take the COVID-19 epidemic in Changchun of China as a simulation of SEMS. It verifies that potential game is an efficient approach to obtain stable cooperation during self-organized resource distribution. Moreover, the number of workers and the possibility of workers choosing suboptimal decisions are key factors for forming stable cooperation.

Suggested Citation

  • Jun Su & Yilin Chen & Dongyu Zhang, 2024. "Game Model of Stable Cooperation During Resource Distribution in Self-Organized Emergency Management System," Group Decision and Negotiation, Springer, vol. 33(6), pages 1325-1353, December.
  • Handle: RePEc:spr:grdene:v:33:y:2024:i:6:d:10.1007_s10726-024-09896-8
    DOI: 10.1007/s10726-024-09896-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-024-09896-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-024-09896-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blume Lawrence E., 1993. "The Statistical Mechanics of Strategic Interaction," Games and Economic Behavior, Elsevier, vol. 5(3), pages 387-424, July.
    2. AUMANN, Robert J. & DREZE, Jacques H., 1974. "Cooperative games with coalition structures," LIDAM Reprints CORE 217, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Gusev, Vasily V., 2021. "Nash-stable coalition partition and potential functions in games with coalition structure," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1180-1188.
    4. Marden, Jason R. & Shamma, Jeff S., 2012. "Revisiting log-linear learning: Asynchrony, completeness and payoff-based implementation," Games and Economic Behavior, Elsevier, vol. 75(2), pages 788-808.
    5. Liu, Chunxia & Lu, Kaihong & Chen, Xiaojie & Szolnoki, Attila, 2023. "Game-theoretical approach for task allocation problems with constraints," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    6. Kumar, Sameer & Havey, Thomas, 2013. "Before and after disaster strikes: A relief supply chain decision support framework," International Journal of Production Economics, Elsevier, vol. 145(2), pages 613-629.
    7. Zheng, Xiao-Xue & Li, Deng-Feng, 2023. "A new biform game-based investment incentive mechanism for eco-efficient innovation in supply chain," International Journal of Production Economics, Elsevier, vol. 258(C).
    8. Antonio Magaña & Francesc Carreras, 2018. "Coalition Formation and Stability," Group Decision and Negotiation, Springer, vol. 27(3), pages 467-502, June.
    9. Anping Zhang & Ke Zhang & Wanda Li & Yue Wang & Yang Li & Lin Zhang, 2022. "Optimising self-organised volunteer efforts in response to the COVID-19 pandemic," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-12, December.
    10. Daniel Seaberg & Laura Devine & Jun Zhuang, 2017. "A review of game theory applications in natural disaster management research," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1461-1483, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manxi Wu & Saurabh Amin & Asuman Ozdaglar, 2021. "Multi-agent Bayesian Learning with Best Response Dynamics: Convergence and Stability," Papers 2109.00719, arXiv.org.
    2. Ragavendran Gopalakrishnan & Jason R. Marden & Adam Wierman, 2014. "Potential Games Are Necessary to Ensure Pure Nash Equilibria in Cost Sharing Games," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1252-1296, November.
    3. Marden, Jason R. & Shamma, Jeff S., 2015. "Game Theory and Distributed Control****Supported AFOSR/MURI projects #FA9550-09-1-0538 and #FA9530-12-1-0359 and ONR projects #N00014-09-1-0751 and #N0014-12-1-0643," Handbook of Game Theory with Economic Applications,, Elsevier.
    4. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, vol. 9(2), pages 1-67, May.
    5. Satsukawa, Koki & Wada, Kentaro & Iryo, Takamasa, 2020. "Reprint of “Stochastic stability of dynamic user equilibrium in unidirectional networks: Weakly acyclic game approach”," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 117-135.
    6. Carlos Alós-Ferrer & Nick Netzer, 2015. "Robust stochastic stability," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(1), pages 31-57, January.
    7. Satsukawa, Koki & Wada, Kentaro & Iryo, Takamasa, 2019. "Stochastic stability of dynamic user equilibrium in unidirectional networks: Weakly acyclic game approach," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 229-247.
    8. Arigapudi, Srinivas, 2020. "Transitions between equilibria in bilingual games under logit choice," Journal of Mathematical Economics, Elsevier, vol. 86(C), pages 24-34.
    9. Sawa, Ryoji, 2014. "Coalitional stochastic stability in games, networks and markets," Games and Economic Behavior, Elsevier, vol. 88(C), pages 90-111.
    10. Xianghui Li & Yang Li, 2021. "On the Structural Stability of Values for Cooperative Games," Journal of Optimization Theory and Applications, Springer, vol. 189(3), pages 873-888, June.
    11. Mario Bravo, 2016. "An Adjusted Payoff-Based Procedure for Normal Form Games," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1469-1483, November.
    12. Holly P. Borowski & Jason R. Marden & Jeff S. Shamma, 2019. "Learning to Play Efficient Coarse Correlated Equilibria," Dynamic Games and Applications, Springer, vol. 9(1), pages 24-46, March.
    13. Satsukawa, Koki & Wada, Kentaro & Watling, David, 2022. "Dynamic system optimal traffic assignment with atomic users: Convergence and stability," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 188-209.
    14. Paolo Penna, 2018. "The price of anarchy and stability in general noisy best-response dynamics," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(3), pages 839-855, September.
    15. Carlos Alós-Ferrer & Nick Netzer, 2017. "On the convergence of logit-response to (strict) Nash equilibria," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(1), pages 1-8, April.
    16. Falk Armin & Kosfeld Michael, 2012. "It's all about Connections: Evidence on Network Formation," Review of Network Economics, De Gruyter, vol. 11(3), pages 1-36, September.
    17. Sylvain Béal & Marc Deschamps & Mostapha Diss & Rodrigue Tido Takeng, 2024. "Cooperative games with diversity constraints," Working Papers hal-04447373, HAL.
    18. Szabó, György & Borsos, István & Szombati, Edit, 2019. "Games, graphs and Kirchhoff laws," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 416-423.
    19. Michael Kosfeld, 2002. "Stochastic strategy adjustment in coordination games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 20(2), pages 321-339.
    20. Steven N. Durlauf & Yannis M. Ioannides, 2010. "Social Interactions," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 451-478, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:33:y:2024:i:6:d:10.1007_s10726-024-09896-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.