IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v33y2024i5d10.1007_s10726-024-09890-0.html
   My bibliography  Save this article

Remanufacturing Mode Selection Based on Non-cooperative Behavior Management in Group Consensus Reaching Process

Author

Listed:
  • Mi Zhou

    (Hefei University of Technology
    Ministry of Education)

  • Xin-Yu Fan

    (Hefei University of Technology
    Ministry of Education)

  • Ba-Yi Cheng

    (Hefei University of Technology
    Ministry of Education)

  • Jian Wu

    (Shanghai Maritime University)

Abstract

Remanufacturing has become one of the most important research topics in the manufacturing industry as it can effectively save costs, reduce environmental pollution and extend the lifecycle of products. The correct selection of remanufacturing mode is the key for enterprise. Previous studies usually constructed game models from the dynamic changes of single influencing factors, which may ignore the influence of interests among decision makers (DMs) and DMs’ non-cooperative behavior under group decision-making circumstances. The non-cooperative behavior processing method that comprehensively considers multiple-attribute and group consensus to help enterprise to select the correct remanufacturing mode is a subject worthy of study. In this paper, we first propose the concept of fuzzy distributed preference relation. It combines the fuzzy set theory and DPR, which is more suitable to express fuzzy and uncertain assessments in complex decision situations. Then, a consensus reaching model to analyze non-cooperative behaviors is proposed. The non-cooperative degrees on attribute, alternative and individual levels are constructed to identify and manage non-cooperative behaviors of DMs. Thirdly, DM’s reliability measurement method is proposed based on the consensus reaching model, and a suitable decision support procedure of remanufacturing mode selection is constructed. Finally, a case study of remanufacturing mode selection is provided to illustrate the effectiveness and validity of the proposed method.

Suggested Citation

  • Mi Zhou & Xin-Yu Fan & Ba-Yi Cheng & Jian Wu, 2024. "Remanufacturing Mode Selection Based on Non-cooperative Behavior Management in Group Consensus Reaching Process," Group Decision and Negotiation, Springer, vol. 33(5), pages 1191-1246, October.
  • Handle: RePEc:spr:grdene:v:33:y:2024:i:5:d:10.1007_s10726-024-09890-0
    DOI: 10.1007/s10726-024-09890-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-024-09890-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-024-09890-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaiying Cao & Bing Xu & Jia Wang, 2020. "Optimal trade-in and warranty period strategies for new and remanufactured products under carbon tax policy," International Journal of Production Research, Taylor & Francis Journals, vol. 58(1), pages 180-199, January.
    2. Yanting Huang & Benrong Zheng & Zongjun Wang, 2023. "Supplier–remanufacturing and manufacturer–remanufacturing in a closed-loop supply chain with remanufacturing cost disruption," Annals of Operations Research, Springer, vol. 324(1), pages 61-92, May.
    3. Zhang, Yunrong & Hong, Zhaofu & Chen, Zhixiang & Glock, Christoph H., 2020. "Tax or subsidy? Design and selection of regulatory policies for remanufacturing," European Journal of Operational Research, Elsevier, vol. 287(3), pages 885-900.
    4. Zhang, Y & Hong, Z & Chen, Z & Glock, C. H., 2020. "Tax or subsidy? Design and selection of regulatory policies for remanufacturing," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 122326, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    5. S. Saha & S.P. Sarmah & Ilkyeong Moon, 2016. "Dual channel closed-loop supply chain coordination with a reward-driven remanufacturing policy," International Journal of Production Research, Taylor & Francis Journals, vol. 54(5), pages 1503-1517, March.
    6. Fu, Chao & Yang, Jian-Bo & Yang, Shan-Lin, 2015. "A group evidential reasoning approach based on expert reliability," European Journal of Operational Research, Elsevier, vol. 246(3), pages 886-893.
    7. Tang, Ming & Liao, Huchang & Mi, Xiaomei & Lev, Benjamin & Pedrycz, Witold, 2021. "A hierarchical consensus reaching process for group decision making with noncooperative behaviors," European Journal of Operational Research, Elsevier, vol. 293(2), pages 632-642.
    8. Chao, Xiangrui & Kou, Gang & Peng, Yi & Viedma, Enrique Herrera, 2021. "Large-scale group decision-making with non-cooperative behaviors and heterogeneous preferences: An application in financial inclusion," European Journal of Operational Research, Elsevier, vol. 288(1), pages 271-293.
    9. Luo, Ruiling & Zhou, Li & Song, Yang & Fan, Tijun, 2022. "Evaluating the impact of carbon tax policy on manufacturing and remanufacturing decisions in a closed-loop supply chain," International Journal of Production Economics, Elsevier, vol. 245(C).
    10. R. Canan Savaskan & Shantanu Bhattacharya & Luk N. Van Wassenhove, 2004. "Closed-Loop Supply Chain Models with Product Remanufacturing," Management Science, INFORMS, vol. 50(2), pages 239-252, February.
    11. Xiong, Yu & Zhao, Quanwu & Zhou, Yu, 2016. "Manufacturer-remanufacturing vs supplier-remanufacturing in a closed-loop supply chain," International Journal of Production Economics, Elsevier, vol. 176(C), pages 21-28.
    12. Sabharwal, Srishti & Garg, Suresh, 2013. "Determining cost effectiveness index of remanufacturing: A graph theoretic approach," International Journal of Production Economics, Elsevier, vol. 144(2), pages 521-532.
    13. Yang, J.B. & Wang, Y.M. & Xu, D.L. & Chin, K.S., 2006. "The evidential reasoning approach for MADA under both probabilistic and fuzzy uncertainties," European Journal of Operational Research, Elsevier, vol. 171(1), pages 309-343, May.
    14. Min Xue & Chao Fu & Shan-Lin Yang, 2021. "Dynamic Expert Reliability Based Feedback Mechanism in Consensus Reaching Process with Distributed Preference Relations," Group Decision and Negotiation, Springer, vol. 30(2), pages 341-375, April.
    15. Yang, Lei & Hu, Yijuan & Huang, Lijuan, 2020. "Collecting mode selection in a remanufacturing supply chain under cap-and-trade regulation," European Journal of Operational Research, Elsevier, vol. 287(2), pages 480-496.
    16. Chao Fu & Dong-Ling Xu & Shan-Lin Yang, 2016. "Distributed preference relations for multiple attribute decision analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(3), pages 457-473, March.
    17. Li, Cong-Cong & Dong, Yucheng & Liang, Haiming & Pedrycz, Witold & Herrera, Francisco, 2022. "Data-driven method to learning personalized individual semantics to support linguistic multi-attribute decision making," Omega, Elsevier, vol. 111(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Abraham & Wang, Jason X. & Farooque, Muhammad & Wang, Yulan & Choi, Tsan-Ming, 2021. "Multi-dimensional circular supply chain management: A comparative review of the state-of-the-art practices and research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    2. Niu, Baozhuang & Ruan, Yiyuan & Zeng, Fanzhuo, 2022. "Promoting remanufacturing through subsidy and environment tax: Channel co-opetition, incentive alignment and regulation optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    3. Dexiang Yang & Qin Yang & Lei Zhang, 2023. "Operational Decisions on Remanufacturing under the Product Innovation Race," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    4. Liu, Zhi & Li, Kevin W. & Tang, Juan & Gong, Bengang & Huang, Jun, 2021. "Optimal operations of a closed-loop supply chain under a dual regulation," International Journal of Production Economics, Elsevier, vol. 233(C).
    5. Yunting Feng & Yong Geng & Ge Zhao & Mengya Li, 2022. "Carbon Emission Constraint Policy in an OEM and Outsourcing Remanufacturer Supply Chain with Consumer Preferences," IJERPH, MDPI, vol. 19(8), pages 1-16, April.
    6. Tong Shu & Qian Liu & Shou Chen & Shouyang Wang & Kin Keung Lai, 2018. "Pricing Decisions of CSR Closed-Loop Supply Chains with Carbon Emission Constraints," Sustainability, MDPI, vol. 10(12), pages 1-25, November.
    7. Xiaojiao Qiao & Xiukun Zhao & Jinhui Zou, 2021. "Remanufacturing Marketing Decisions in the Presence of Retailing Platforms in the Carbon Neutrality Era," IJERPH, MDPI, vol. 19(1), pages 1-18, December.
    8. Chao Fu & Weiyong Liu & Wenjun Chang, 2020. "Data-driven multiple criteria decision making for diagnosis of thyroid cancer," Annals of Operations Research, Springer, vol. 293(2), pages 833-862, October.
    9. Cheng, Fei & Chen, Tong & Chen, Qiao, 2022. "Cost-reducing strategy or emission-reducing strategy? The choice of low-carbon decisions under price threshold subsidy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    10. Fangfang Zhang & Hao Wang & Xiaoyu Wu, 2021. "The Impact of Government Subsidies on Single-Channel Recycling Based on Recycling Propaganda," Energies, MDPI, vol. 14(23), pages 1-14, December.
    11. Fang, Chang & Fan, Shuyi & Chi, Mingxiang & Wang, Weizhong, 2023. "The optimal remanufacturing strategy, returned quality choice and independent remanufacturers’ advantage for tackling extreme weather," International Journal of Production Economics, Elsevier, vol. 259(C).
    12. Zhang, Ling & Zhang, Zheng, 2022. "Dynamic analysis of the decision of authorized remanufacturing supply chain affected by government subsidies under cap-and-trade policies," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    13. Matsui, Kenji, 2022. "Optimal timing of acquisition price announcement for used products in a dual-recycling channel reverse supply chain," European Journal of Operational Research, Elsevier, vol. 300(2), pages 615-632.
    14. Juan Tang & An‐Lin Song & Chang‐Yi Liu & Zhi Liu, 2023. "Optimal decisions in a remanufacturing supply chain under money‐back guarantees," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(4), pages 2254-2277, June.
    15. Fei Wang & Dalin Zhang, 2022. "Effects of a Mixed Emissions Control Policy on the Manufacturer’s Production and Carbon Abatement Investment Decisions," IJERPH, MDPI, vol. 19(20), pages 1-20, October.
    16. Yan Zhou & Miao Hou & Kar-Hung Wong, 2023. "The Optimal Remanufacturing Strategy of the Closed-Loop Supply Chain Network under Government Regulation and the Manufacturer’s Design for the Environment," Sustainability, MDPI, vol. 15(9), pages 1-34, April.
    17. Wang, Nengmin & He, Qidong & Jiang, Bin, 2019. "Hybrid closed-loop supply chains with competition in recycling and product markets," International Journal of Production Economics, Elsevier, vol. 217(C), pages 246-258.
    18. Luo, Li & Shan, Renbang & Xiang, Jie, 2024. "The government intervention effectiveness in promoting remanufacturing: Subsidy or remanufacturing target?," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
    19. Alegoz, Mehmet & Kaya, Onur & Bayindir, Z. Pelin, 2021. "A comparison of pure manufacturing and hybrid manufacturing–remanufacturing systems under carbon tax policy," European Journal of Operational Research, Elsevier, vol. 294(1), pages 161-173.
    20. Biao Li & Yong Geng & Xiqiang Xia & Dan Qiao & Hao Wang, 2021. "Comparatively Analyzing the Impact of Government Subsidy and Carbon Tax Policy on Authorized Remanufacturing," IJERPH, MDPI, vol. 18(16), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:33:y:2024:i:5:d:10.1007_s10726-024-09890-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.